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a b s t r a c t

The effective thermal conductivity of CNT/water nanofluid is measured with different CNT loadings (0.22–

1 vol%) and temperatures (30–90 °C). The enhanced thermal conductivity increased nonlinearly with CNT

concentrations while the ratios are almost constant with the rise of temperature. An aggregate-based model

is proposed to predict the enhanced thermal conductivity of CNT-based nanofluid. The present model gives

the lower and upper limits of CNT-based nanofluid with majority of the previous data fall within these

bounds. CNT contact results in low-resistance heat conduction path which serves high thermal conductivity

of nanofluid. The proposed model exhibits quite well an agreement with the experimental data and affords

improved predictions for the enhanced thermal conductivity. The present study sheds light on the thermal

conductivity mechanisms in CNT-based nanofluids with respect to CNT aggregate state in base fluids.

© 2015 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
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. Introduction

Nanofluids are suspensions of nanoparticles dispersed in conven-

ional heat transfer fluids such as deionized water (DW), ethylene

lycol (EG), and engine oil (EO) [1–3]. The nanofluids were found to

xhibit more stable and higher thermal conductivity than those mix-

ures containing millimeter or micrometer-sized particles during the

ast decades [4–7]. When dispersed nanoparticle volume fractions

ere very low (ϕp < 5 vol%), the nanofluid exhibited striking high

hermal conductivity which had been regarded as high efficient heat

xchange fluid.

Carbon nanotubes (CNTs) have drawn worldwide attention since

ts discovery in 1991 [8]. CNTs are excellent nanoparticles for prepar-

ng nanofluids because they have superior thermal conductivity

750–6600 W/m K) [9–11] besides their high aspect ratio. The effec-

ive thermal conductivity of CNT-based nanofluids has been explored

12–20]. Choi et al. [12] reported a thermal conductivity enhancement

f 156% for 1 vol% CNTs dispersed in synthetic poly-α-olefin oil (PAO).

or DW, EG, and decene (DE)-based nanofluids with a CNT volume

raction of 1 vol%, Xie et al. [13] reported that the effective thermal

onductivities were enhanced by 7%, 12.7%, and 19.6%, respectively.

ecently, Liu et al. [18] measured the thermal conductivities of 1 vol%
NT-based nanofluids with the CNT outer diameter 20–50 nm and
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bout 9% and 12.4% enhancements were observed with EO and EG as

he base fluids. Fig. 1 summarized the experimental data of thermal

onductivity enhancement of CNT-based nanofluids. The relation be-

ween thermal conductivity enhancement (knf/kbf) and CNT volume

raction (ϕp) was nonlinear, which was quite different from the linear

elationship for nanofluids with spherical particles [2–7].

Various potential mechanisms that contribute to enhanced

anofluid thermal conductivity including nanoparticle Brownian mo-

ion, particle aggregation, nanolayer, ballistic transport and nonlocal

ffects, near-field radiation, and nanoparticle thermophoresis have

een proposed [21–28]. Since their aspect ratio is high, CNTs easily

ggregate or contact with each other in the base liquid. Aggregation

odel is one of the important mechanisms to explain the substan-

ially high thermal conductivity of nanofluid [21,24–26]. Thermal con-

uctivity enhancement contributions of other potential mechanisms

uch as Brownian motion and interfacial nanolayer were negligible

29]. Many researchers have proposed various models to explain the

nomalous thermal conductivity of CNT-based nanofluids. However,

he observed results of the effective thermal conductivity cover a

ide range and the nonlinear relation between thermal conductivity

nhancement and the CNT volume fraction cannot be satisfactorily

redicted by these models [26,30].

In this study, the CNT/DW nanofluid stability was evaluated and

he enhanced thermal conductivity as a function of CNT concentration

nd temperature between 30 and 90 °C was determined. A model

ased on the CNT aggregation was proposed and the present model

ompared well with majority of the available data considering the

arious concentrations of CNTs in the aggregates.
ts reserved.
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Nomenclature

knf nanofluid thermal conductivity (W/m K)

kbf base fluid thermal conductivity (W/m K)

kp nanoparticle thermal conductivity (W/m K)

kint aggregate thermal conductivity (W/m K)

kc
11 CNT transverse equivalent thermal conductivity

(W/m K)

kc
33 CNT longitudinal equivalent thermal conductivity

(W/m K)

ϕp volume fraction of CNTs in base fluid

ϕa volume fraction of aggregates in base fluid

ϕint volume fraction of CNTs in aggregate

ak Kapitza radius (m)

Rk interface thermal resistance (m2 K/W)

dp CNT diameter (m)

Lp CNT length (m)

β11 and β33 dimensionless parameters

Subscripts

nf nanofluid

bf base fluid

p nanoparticles in base fluid

int nanoparticles in aggregate

a aggregates in base fluid

2. Experimental procedure

The multi-walled CNTs (density 1.7 g/cm3, purity > 97%) were pro-

duced by fluidized-bed chemical vapor deposition (FBCVD) method

[31,32]. The base fluid DW (density 0.997 g/cm3) was purchased from

Tsinghua–Foxconn Nanotechnology Research Center, Beijing, China.

The CNT/DW nanofluid was prepared by two-step method. The facile

sheared CNTs were dispersed in DW using polyvinyl pyrrolidone

(Aladin Industrial Corporation, Shanghai, China) as dispersant with

the aid of magnetic force agitation (RET, IKA, Germany) for 30 min.

The resultant suspension was then vibrated continuously by intensive
Fig. 1. Measured thermal conductivity of CNT-based nanofluids (base fluids: PAO

means poly-α-olefin oil, DW means deionized water, EG means ethylene glycol, DE

means decene, MO means mineral oil, EO means engine oil, and [Bmin] PF6 means

1-butyl-3-methylimidazolium hexafluorophosphate) [12–20].

Please cite this article as: H. Jiang et al., Effective thermal conductivity of c
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ltrasonication (JY98-IIIN, SCIENTZ, China) for 1 h to obtain a uniform

anofluid.

The transient hot-wire method was employed to measure the

anofluid thermal conductivity at temperature between 30 and 90 °C.

his technique was recognized as the most accurate method due

o numerous advantages such as elimination of convection related

o steady-state method and faster measurement response [33]. The

chematic diagram and the measurement procedure had been ex-

lained previously in detail [6,7,34]. The apparatus was calibrated

y measuring thermal conductivity of saturated liquid toluene (pu-

ity > 99.5%) from 30 to 300 °C and the maximum uncertainty was

.55% [6,7].

. Model formulation

Nan et al. [23] proposed a model including the effect of the in-

erfacial resistance. The enhanced thermal conductivity of CNT-based
Fig. 2. Comparison of Nan model and experimental data [12].

Fig. 3. Schematic of CNTs in aggregate (ϕint) and aggregates in nanofluid (ϕa).
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Fig. 4. Morphology of CNTs: (A) TEM photograph of pristine CNTs; (B) Raman spectroscopy image of pristine CNTs; (C) SEM image of pristine CNTs; (D) SEM image of dispersed

CNTs in DW.
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Fig. 5. Effective thermal conductivity of the 0.75 vol% nanofluid during the standing

time at 80 °C.
anofluids could be expressed by:

knf

kbf

= 3 + (β11 + β33)ϕp

3 − β11ϕp
(1)

here knf and kbf are the thermal conductivities of the nanofluid and

he base fluid and ϕp is the volume fraction of the CNT.

11 = 2(kc
11 − kbf)

kc
11 + kbf

, β33 = kc
33

kbf

− 1 (2)

The parameters kc
11 and kc

33 are the transverse and longitudinal

quivalent thermal conductivities of the CNT, respectively.

c
11 = kp

1 + 2ak

dp

kp

kbf

, kc
33 = kp

1 + 2ak

Lp

kp

kbf

(3)

here dp and Lp are, respectively, the diameter and length of the

NT, kp is the CNT thermal conductivity, and ak is the Kapitza radius

xpressed by ak = Rkkbf. Rk is the CNT–liquid interface thermal re-

istance, which is 8.33 × 10−8 m2 K/W [35]. The calculated results

ased on Nan’s model are compared with the experimental data as

hown in Fig. 2. A mean diameter of �25 nm and a length of �50 μm

for an average aspect ratio of �2000) CNTs dispersed in PAO was

nvestigated by Choi et al. [12]. The calculated values predicted by

an’s model are much greater than the experimental data obtained
Please cite this article as: H. Jiang et al., Effective thermal conductivity of carbon nanotube-based nanofluid, Journal of the Taiwan Institute of
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Fig. 6. Enhanced nanofluid thermal conductivity for: (A) various temperatures (30–90 °C) and CNT volume fractions (0.22–1 vol%); (B) different CNT volume fractions at 30 °C.

Fig. 7. Parameter ϕint calculated from our model with previous data [12–20].
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by Choi et al. as the maximum thermal conductivity enhancement

in Fig. 1.

The Nan’s model overestimated the effective thermal conductivity

of CNT-based nanofluids without considering the aggregation effects.

When CNTs became agglomerated, the decreased SSA (specific surface

area) of CNTs induced weak thermal transfer between CNTs, which

reduced nanofluid thermal conductivity. Prasher et al. [24] proposed

a model to describe the observed anomalous thermal conductivity

enhancement reported in previous experiments. The data can be well

explained by considering aggregation kinetics of spherical nanopar-

ticles. This method is also applicable to CNT-based nanofluids taking

aggregation into account.

ϕp = ϕintϕa (4)

where ϕint is the volume fraction of the CNTs in the aggregate and ϕa

the volume fraction of the aggregates in the entire fluid (Fig. 3). The

volume fraction of the aggregates ϕa decreases with increasing ϕint

and ϕp � ϕint � 1. The thermal conductivity of the aggregates, kint, is
Please cite this article as: H. Jiang et al., Effective thermal conductivity of c
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xpressed by rewriting the Nan’s model.

kint

kbf

= 3 + (β11 + β33)ϕint

3 − β11ϕint

(5)

here β11 and β33 are defined by Eq. (2). The effective thermal con-

uctivity of CNT-based nanofluid is calculated by [36]

knf

kbf

= (kint + 2kbf)+ 2ϕa(kint − kbf)

(kint + 2kbf)− ϕa(kint − kbf)
(6)

. Results and discussions

.1. Morphology and stability of nanofluids

Fig. 4(A) shows TEM photograph of the as received CNTs. The av-

rage outer diameter and length of these CNTs are about 11 nm and

0 μm, respectively. The ID/IG on the Raman spectrum is about 0.76

Fig. 4(B)), indicating the CNTs were with high graphitization. Fig. 4(C)

nd (D) were the SEM images of the as received pristine CNTs and the
arbon nanotube-based nanofluid, Journal of the Taiwan Institute of
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Fig. 8. Lower and upper bounds for CNT-based nanofluid thermal conductivity.
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repared CNTs in DW, respectively. The pristine CNTs were not only

ggregated, but entangled with each other (Fig. 4(C)). The entangle-

ents were broken in the as-prepared CNT-based nanofluids.

Fig. 5 exhibits the effect of the standing time (sedimentation

ime) on the effective thermal conductivity of nanofluid containing

.75 vol% CNTs at 80 °C. The effective nanofluid thermal conductivities

ltered little within 80 h at 80 °C. There was no visible sedimentation

f CNTs in the nanofluids, which demonstrated the good stability of

he CNT-based nanofluids.

.2. Effects of CNT concentration and temperature on effective thermal

onductivity

The enhanced thermal conductivities of CNT/DW nanofluid were

easured at different CNT volume fractions (0.22–1 vol%) and tem-

eratures (30–90 °C), which is demonstrated in Fig. 6. The en-

anced thermal conductivities were almost constant with increasing
Fig. 9. Comparison of experimental data and present model: (A) various CNT volu

Please cite this article as: H. Jiang et al., Effective thermal conductivity of c

Chemical Engineers (2015), http://dx.doi.org/10.1016/j.jtice.2015.03.037
emperature. The fluctuations of enhanced thermal conductivity be-

ame larger at higher temperature (>70 °C) (Fig. 6(A)). The effective

hermal conductivity enhancement increased nonlinearly with in-

reasing CNT volume fraction (Fig. 6(B)).

.3. Comparison with models

Fig. 7 shows the various ϕint calculated from present model with

revious data of the thermal conductivity enhancement of CNT-based

anofluids. The parameter ϕint is an empirical factor, which is influ-

nced by CNT geometry, CNT volume fraction, type of fluid, the in-

eraction between CNTs and base fluid, etc. It is impossible to deduce

he accurate value of ϕint by theoretical model and ϕint needs to sat-

sfy ϕp � ϕint � 1. The variant ϕint denotes CNT aggregation state

n the base fluid. Higher ϕint means increased CNT concentration in

he aggregate. The parameter ϕa is the volume fraction of the aggre-

ates in the entire fluid which is define by Eq. (4). When ϕa = 1 and

p = ϕint (the nanofluid is a homogeneous suspension), knf = kint,

hich means a medium composed wholly of CNT aggregates. When

int = 1 (the nanofluid is a well-dispersed suspension), there is only

ne CNT in each aggregate. The experimental data will lie between

hese two limits. The lower bound lies closer to thermal conductor in

series link (well-dispersed, separated), while the upper bound lies

loser to a parallel conductor (chain-forming, clustered into percola-

ion network). Chain-like aggregation of CNTs easily forms to conduc-

ive paths of high thermal conductivity, which can significantly en-

ance effective thermal conductivity [24,37]. Fig. 8 depicts the lower

nd upper bounds of present model compared with one experimental

ata [17]. The data lie between these two limits considering the CNT

ggregate state in the base fluid. The bounds do not provide an ac-

urate value of effective thermal conductivity but sets the restrictive

imits taking the CNT aggregation into account.

The results predicted by the present model and Nan’s model are

ompared with our experimental data (Fig. 9). The observed nonlinear

esults of the enhanced thermal conductivity with CNT concentrations

Fig. 6(B)) were predicted by the present model quite well, while the

an’s model predicts the enhanced thermal conductivities almost

inearly with CNT loadings at small concentrations (ϕp < 1 vol%).

ig. 9(B) depicts the experimental data compared with present model

t different temperatures. Because of high aspect ratio (�1000)

sed in our experiment, CNTs aggregated easily with each other.
me fractions at 30 °C; (B) various temperatures and CNT volume fractions.

arbon nanotube-based nanofluid, Journal of the Taiwan Institute of
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Consequently, contribution of other factors related to temperature

such as Brownian motion induced nano-convection were negligible.

5. Conclusions

The stability of CNT/DW nanofluid was estimated by measuring

effective thermal conductivity with various sedimentation times. The

data of enhanced thermal conductivity of CNT-based nanofluid was

collected at various CNT concentrations (0.22–1 vol%) and tempera-

tures (30–90 °C). The thermal conductivity enhancement increased

nonlinearly with higher CNT volume fractions. The temperature has a

tiny role in the enhanced thermal conductivity of CNT-based nanoflu-

ids. A model of CNT-based nanofluid thermal conductivity based on

the CNT aggregate state is proposed and the nanoparticle concen-

tration in the aggregate ϕint is served as an empirical parameter.

The present model gives the lower and upper limits of CNT-based

nanofluid thermal conductivity. Chain-like aggregation of CNTs is

beneficial to the thermal conduction which is conductive to de-

velop nanofluids with higher thermal conductivity and performance

to achieve ever-increasing cooling rates.
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