Highly dispersed Mn$_2$O$_3$ microspheres: Facile solvothermal synthesis and their application as Li-ion battery anodes

Jianfei Yua, Lin Zhua,b, Cheng Fana, Cheng Zanb, Ling Hua, Shuhui Yanga, Qiang Zhanga,*, Wancheng Zhuc, Lin Shid, Fei Weia

a Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
b State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration & Development, China National Petroleum Corporation, Beijing 100007, China
c Department of Chemical Engineering, Qufu Normal University, Shandong 273165, China
d Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China

A R T I C L E I N F O

Article history:
Received 21 August 2014
Received in revised form 5 October 2014
Accepted 11 October 2014

Keywords:
Mn$_2$O$_3$
Microspheres
Li-ion batteries
Solvothermal synthesis
Nanostructures

A B S T R A C T

Nanostructured transition metal oxides are promising alternative anodes for lithium ion batteries. Li-ion storage performance is expected to improve if high packing density energy particles are available. Herein, Mn$_2$O$_3$ microspheres with a ca. 18 μm diameter and a tapped density of 1.33 g/cm3 were synthesized by a facile solvothermal–thermal conversion route. Spherical Mn$_2$O$_3$ precursors were obtained through solvothermal treatment and they decomposed and converted into Mn$_2$O$_3$ microspheres at an annealing temperature of 700°C. The Mn$_2$O$_3$ microspheres consisted of Mn$_2$O$_3$ nanoparticles with an average 40 nm diameter. These porous Mn$_2$O$_3$ microspheres allow good electrolyte penetration and provide an ion buffer reservoir to ensure a constant electrolyte supply. The Mn$_2$O$_3$ microspheres have reversible capacities of 590 and 320 mAh/g at 50 and 400 mA/g, respectively. We thus report an efficient route for the fabrication of energy particles for advanced energy storage.

© 2015 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

1. Introduction

Rechargeable lithium ion batteries (LIBs) have become the dominant power source used in portable electronic devices because of their excellent low self-discharge rate, high coulombic energy efficiency, and the absence of a memory effect (Deng, Wan, Xie, Qin, & Chen, 2014; Su & Schlogl, 2010). However, commercial LIB anode materials such as graphite have a relatively low Li storage capacity of only 372 mAh/g. Much effort has been put into the development of better electrode materials for LIBs to meet ever-growing performance demands (Cheng et al., 2013b; Gao et al., 2013; Jiang, Tang, Wu, Lin, & Qu, 2013; Zhang et al., 2014c).

Nanostructured transition metal oxides are the most widely investigated alternative anode materials for LIBs because of their large theoretical specific capacities (Yuan, Wu, Xie, & Lou, 2014). Among all transition metal oxides, manganese-based oxides have lower operating voltages (average discharge and charge voltages of 0.5 and 1.2 V, respectively). Anode materials with lower charge (battery discharge process) voltages versus Li/Li$^+$ can deliver a higher energy density. Manganese oxides (MnO$_x$) are an important class of the metal oxide family and are believed to be promising electrode materials because of their abundance, nontoxicity, and low cost. For instance, manganese oxides with excellent structural flexibility combined with unique chemical and physical properties are widely used in fields like heterogeneous catalysis (Han et al., 2008; Xu et al., 2012), electrocatalysis (Cheng et al., 2013a), supercapacitors (Xu, Kang, Li, & Du, 2010; Yan et al., 2010), and rechargeable batteries (Dai, Jiang, Hu, & Li, 2013; Wang et al., 2014; Zhang et al., 2014b). Among these, Mn$_2$O$_3$ possesses a high theoretical specific capacity (∼1018 mAh/g) as an anode material for LIBs. Recently, Mn$_2$O$_3$ nanorods (Shen, Ji, Miao, Yang, & Chen, 2011), nanocubes (Wang et al., 2012), nanoplates (Zhang et al., 2014b), stacking nanoflowers (Zhang, Qian, Zhu, & Tang, 2014a), porous spheres (Chang et al., 2013; Deng et al., 2012;...
Qiao, Yu, Jin, Guan, & Chen, 2014), nanochains (Salavati-Niasari, Mohandes, Davar, & Saberyan, 2009), nano-ovals (Qiu et al., 2011), and nanocones (Dai et al., 2013) have been reported. Both the structure and morphologies of MnO2 nanostructures can be easily tuned. However, their packing density is usually not very high and the volumetric density of the as-obtained electrodes should be further improved. An efficient method to fabricate high packing density MnO2 nanostructures with excellent Li-ion storage performance is thus required.

In this contribution, MnO2 microspheres were fabricated through the facile solvothermal synthesis from MnCO3 precursors and subsequent calcination. Microspheres have a high tapped density and, therefore, are widely employed in the battery industry. The reason we selected solvothermal synthesis is because of advantages such as high efficiency, low cost, extraordinary homogeneity, ability to mix starting compounds on the molecular level, and flexibility to effectively tailor products by tuning synthetic parameters (Liu et al., 2012). As-obtained MnO2 microspheres exhibit good electrochemical performance as anode materials for LIBs.

2. Experimental

2.1. Synthesis of MnO2 microspheres

Mn(NO3)2·6H2O (99.9%), ethylene glycol (C2H4O2·99.9%), and HNO3 (99.9%) were purchased from Beijing Chemical Company (China) and used as received. In the preparation of MnO2 microspheres, 2.0 mL 5.0 M Mn(NO3)2 and 2.0 mL 5.0 M HNO3 solution were added to ethylene glycol. After stirring for 10 min, the mixtures were transferred to a 100 mL Teflon-lined vessel, which was sealed in an autoclave and then treated at 180 °C for 10 h. As the autoclave was cooled to room temperature naturally, the MnO2 precursors were collected from the reaction solution by centrifugation at 10,000 rpm for 10 min. The precursors were washed several times with ethanol and dried in air at 100 °C. The final MnO2 microspheres were obtained upon heat treatment of the precursors at 700 °C for 2 h in air.

2.2. Characterization

The as-prepared MnO2 microspheres were examined by X-ray diffraction (XRD, DB Advance, Bruker, Germany; CuKα), scanning electron microscopy (SEM, JSM7401, JEOL, Japan; 3–20 kV), transmission electronic microscopy (TEM, JEOL2010, JEOL, Japan; 200 kV), Raman spectroscopy (Horiba JY, France; 633 nm laser), X-ray photoelectron spectroscopy (XPS, 250Xi, ESCALAB, USA; MgKα), and thermogravimetric analysis (TGA, TGA/DSC1, Mettler Toledo, Switzerland; elevating heat rate: 10 °C/min, O2 atmosphere).

2.3. Electrochemical measurements

The composite electrodes consisted of 80% MnO2, 10% carbon nanotubes (high purity, made by fluidized bed technology of Tsinghua University), and 10% polyvinylidene fluoride (PVDF, 761A, Arkema, France) by weight and were prepared by coating the mixture on copper foil. The 2025coin cells use lithium foil as a counter electrode, a polypropylene microporous membrane as a separator and 1.0 M LiPF6 dissolved in ethylene carbonate (EC), dimethyl carbonate (DMC), and ethylene methyl carbonate (EMC) (1:1:1, v/v/v) as the electrolyte. The cells were assembled in an argon-filled glove box. Charge–discharge measurements were carried out using a Neware battery testing system (CT3008 W) at 100 mA/g in the range of 0.01–3.0 V versus Li/Li+. The Raman spectra of the MnO2 precursors and the samples annealed at 700 °C for 2 h are shown in Fig. 2(b). The Raman bands of around 200–1000 cm−1 come from the Mn–O vibration modes of manganese oxides. The Raman spectrum of the MnO2 precursors contains Mn–O vibrations of MnO2 and these are located at 953.1, 643.2, and 347.8 cm−1. Three Raman bands are centered at 948.8, 628.6, and 335.5 cm−1 respectively, and these fit the Mn(III)–O modes observed in the reference Mn2O3 well (Han et al., 2008).

3. Results and discussion

3.1. Structure of the MnO2 microspheres

MnCO3 microspheres with a diameter of ca. 20 μm (Fig. 1(a)) were formed as precursors in the solvothermal process with Mn(NO3)2 and HNO3 as oxidant, as well as ethylene glycol as the medium. Ethylene glycol provides abundant hydroxyl ligands to coordinate with manganese ions, which reduces the hydrolysis rate of the manganese ions and induces the formation of spherical MnO2 precursor (Liang, Xu, Kuang, & Wang, 2008). The carboxyl groups produced by HNO3 oxidation inhibit precursor hydrolysis and favor the formation of microspheres. The rough surfaces of the as-prepared MnO2 microspheres are composed of tiny grains. The spherical morphology of the MnO2 microspheres is attributed to energy minimization principle in these systems. After heat treatment under an air atmosphere at 700 °C for 2.0 h, the MnO2 microspheres decomposed into MnO2 microspheres. The MnO2 microspheres had an average diameter of about 18 μm. A tapped density of 1.33 g/cm3 was obtained.

The crystal structures of the as-synthesized samples were determined by XRD (Fig. 1(c)). All the diffraction peaks of the precursor were indexed to rhombohedral MnO2 (JCPDS Card No. 85-1109, space group: R-3c, a = b = c = 4.72926 Å, c = 15.48718 Å, α = β = γ = 90°,) without other impurities. All the diffraction peaks of the precursors that were annealed at 700 °C were perfectly indexed to the cubic phase of MnO2 (JCPDS Card No. 24-0508, space group: Ia3, a = b = c = 9.4091 Å, α = β = γ = 90°). According to the Scherrer formula, the as-obtained MnO2 had an average size of 40.6 nm. A high-resolution TEM image of MnO2 is shown in Fig. 1(d). The lattice fringe with an interplanar distance of 0.473 nm corresponds to the (200) plane of the cubic α-MnO2 structure.

To investigate the growth mechanism of the MnO2 microspheres, concentration-dependent shape evolution studies were also carried out. When using a 1.0 mL Mn(NO3)2 solution the MnO2 (Fig. S1) were found to be irregular grains because of Ostwald ripening. The thermal decomposition behavior of the MnO2 precursors was investigated by TGA and differential scanning calorimetric (DSC) methods (Fig. 2(a)). Three weight loss steps are present in the TGA profile. The first weight loss is between 30 and 250 °C in the TGA curve and comes from the desorption of physically absorbed water, glycol molecules, glycol oligomers, and other organic molecules (Chen, Yu, & Liang, 2011). The second sharp weight loss step between 250 and 400 °C corresponds to the decomposition and oxidation of chemically bonded organic species and the partial thermal decomposition of MnCO3 to MnO in the precursors. The third weight loss step between 400 and 550 °C comes from the transformation of MnO2 and MnO to MnO2. In particular, 500 °C was found to be a critical temperature for the simultaneous decomposition of MnCO3 and oxidation of MnO (Chang et al., 2013). The DSC curve exhibited an exothermic peak centered at about 260 °C and this corresponds well to the rapid weight loss in the TGA curve. Consequently, annealing the MnO2 precursors at 700 °C for 2.0 h induced the formation of pure α-MnO2. The specified surface area of the as-obtained α-MnO2 was 12.6 m2/g and the pore volume was 0.018 cm3/g (Fig. S2).

The Raman spectra of the Mn2O3 precursors and the samples annealed at 700 °C for 2.0 h are shown in Fig. 2(b). The Raman bands of around 200–1000 cm−1 come from the Mn–O vibration modes of manganese oxides. The Raman spectrum of the Mn2O3 precursors contains Mn–O vibrations of MnO2 and these are located at 953.1, 643.2, and 347.8 cm−1. Three Raman bands are centered at 948.8, 628.6, and 335.5 cm−1 respectively, and these fit the Mn(III)–O modes observed in the reference Mn2O3 well (Han et al., 2008).
An XPS measurement of the as-prepared Mn$_2$O$_3$ microspheres was carried out to identify the chemical state of Mn as well as the composition and purity of the samples (Fig. 2(c) and (d)). The binding energy (BE) values of Mn 2p1/2 and Mn 2p3/2 in the sample were 653.2 and 641.3 eV, respectively (Fig. 2(c)). Spin-orbit splitting was responsible for the difference between the BE values of the Mn 2p3/2 and Mn 2p1/2 levels. The observed spin-orbit splitting value was about 11.9 eV, which was nearly the same as that in manganese oxides. The BE of Mn 2p3/2 (641.3 eV) and spin-orbit splitting (11.9 eV) were nearly the same as the values reported for Mn$_2$O$_3$ (Salavati-Niasari et al., 2009). Oxygen spectra are also shown in Fig. 2(d). The O 1s peaks at 529.7 and 531.1 eV are attributed to oxygen O$^{2-}$ in the lattice of Mn–O–Mn.

3.2. Mn$_2$O$_3$ microsphere formation mechanism

The formation of uniform Mn$_2$O$_3$ microspheres was investigated as follows. First, spherical MnCO$_3$ precursors were obtained through a soft-chemical process. Glycol acted as both a solvent and a ligand. Glycol was oxidized by HNO$_3$ and a series of organic ligands such as ethane diacid, ethanoic acid, and poly(ethylene glycol) formed. Manganese is oxyphilic and, therefore, it coordinates with these organic ligands to form hybrid precursors in the initial period. Because of the minimum surface energy principle, the precursors fabricated by the soft-chemical process have spherical morphology. During the annealing process, the noncrystalline precursors convert into the crystalline cubic phase of Mn$_2$O$_3$. The organic ligands decompose and combust leading to the maintenance of the microsphere’s morphology (see Fig. 3).

3.3. Li-ion storage performance of Mn$_2$O$_3$ microspheres

The electrochemical performance of an as-prepared Mn$_2$O$_3$ microsphere electrode as an anode material for LIBs was investigated. Cyclic voltammetry (CV) profiles of the Mn$_2$O$_3$ microspheres are shown in Fig. 4(a). The voltammograms were measured at a sweeping rate of 0.1 mV/s in the potential range from 3.0 to 0.02 V vs. Li$^+$/Li at room temperature. The CV curve for the first cycle was different from that of subsequent cycles. The strong peak centered at 0.36 V in the first cathodic process was associated with the reduction of Mn$^{2+}$ to Mn0. In subsequent cycles the main cathodic peak shifted to about 0.30 V. For the anodic process, two peaks were present at 1.29 and 2.35 V, and these come from the oxidation of Mn0 to Mn$^{2+}$ and Mn$^{2+}$ to Mn$^{3+}$, respectively. The first anodic peak shifted to 1.40 V because of the polarization induced by solid electrolyte formation during the first cycle. Compared with the first discharge process, the peak current decreased and this indicates capacity loss during the charging process. The cathodic peak for
Mn$^{3+}$ to Mn$^{2+}$ was faint. However, as shown in the discharge curves in Fig. 4(b), the slope at 1.5–0.4 V and the voltage plateau at 0.4 V come from Li-ion insertion for Mn$^{3+}$ to Mn$^{2+}$ and Mn$^{2+}$ to Mn0, respectively. The lithium storage mechanism of the Mn$_2$O$_3$ microspheres is as follows (Chang et al., 2013; Deng et al., 2012):

\[
2\text{Li}^+ + 3\text{Mn}_2\text{O}_3 + 2e^- \rightarrow 2\text{Mn}_3\text{O}_4 + \text{Li}_2\text{O}
\]

(1)

\[
2\text{Li}^+ + \text{Mn}_3\text{O}_4 + 2e^- \rightarrow 3\text{MnO} + 2\text{Li}_2\text{O}
\]

(2)

\[
\text{MnO} + 2\text{Li}^+ + 2e^- \rightarrow 4\text{Li}_2\text{O} + \text{Mn}
\]

(3)

With an increase in current density the discharge capacity of the Mn$_2$O$_3$ anode decreases gradually. Specific discharge capacities of 590, 435, 377, and 320 mAh/g at 50, 100, 200, and 400 mA/g, respectively, were obtained (Fig. 4(c)). This is similar to the Li-ion storage performance reported for porous Mn$_2$O$_3$ spheres (∼300 mAh/g at 200 mA/g for Mn$_2$O$_3$ calcined at 700 °C) (Chang et al., 2013), straw-sheaf-shaped Mn$_2$O$_3$ (∼370 mAh/g at 400 mA/g) (Qiu et al., 2011), and hollow Mn$_2$O$_3$ nanocones (∼380 mAh/g at 400 mA/g) (Dai et al., 2013). This good rate performance is attributed to rapid ion diffusion through the mesopores of the Mn$_2$O$_3$ microspheres.

The cycling stability of the Mn$_2$O$_3$ microspheres was evaluated at a current density of 100 mAh/g. Fig. 4(d) shows plots of the discharge capacity and coulombic efficiency versus cycle number. A rapid capacity fading was detected over the initial five cycles, and this stabilized over the following 95 cycles. The coulombic efficiency was nearly 100% for the whole test. These results indicate that the Mn$_2$O$_3$ microspheres possess impressive Li-ion storage performance, which is better than that of reported pure porous Mn$_2$O$_3$ spheres (Chang et al., 2013) and also superior to nanocarbon anodes (Cheng et al., 2013b).

The good Li-ion storage performance of Mn$_2$O$_3$ microspheres can be attributed to the following aspects. First, the porous Mn$_2$O$_3$ microspheres allow good electrolyte penetration and an ion buffer reservoir to ensure a constant supply of electrolyte, even at high rates. Second, microspheres are ideal structures to accommodate the stress induced by volume changes during cycling, and the close packing of microspheres results in an anode with a high volumetric density. Li-ion storage performance can be further improved using a combination of nanocarbon structures as short-range current collectors from nanosized Mn$_2$O$_3$ nanoparticles.
4. Conclusions

Mn$_2$O$_3$ microspheres of ca. 18 μm in size were synthesized by a general, facile solvothermal–thermal conversion route. The porous Mn$_2$O$_3$ microspheres allow good electrolyte penetration and an ion buffer reservoir to ensure a constant supply of electrolyte. They exhibit a reversible capacity of 590 and 320 mA h g$^{-1}$ at 50 and 400 mA g$^{-1}$, respectively. Microspheres with a packing density of 1.33 g/cm3 are ideal structures to accommodate the stress. Mn$_2$O$_3$ microspheres have potential application as anodes in lithium ion batteries with high energy density. This work offers a facile method to fabricate advanced functional particles for energy storage.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21422604), the PetroChina Technology R&D Project on New Technology and the Method for Oil & Gas Development (2011A-1006), and CNPC Innovation Foundation (2014D-5006-0207).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at http://dx.doi.org/10.1016/j.partic.2014.10.007.

References

Deng, Y., Wan, L., Xie, Y., Qin, X., & Chen, G. (2014). Recent advances in Mn-based oxides as anode materials for lithium ion batteries. RSC Advances, 4, 23914–23935.

