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Rechargeable lithium-ion batteries (LIBs) afford a profound impact on our modern daily life. However,
LIBs are approaching the theoretical energy density, due to the inherent limitations of intercalation
chemistry; thus, they cannot further satisfy the increasing demands of portable electronics, electric vehi-
cles, and grids. Therefore, battery chemistries beyond LIBs are being widely investigated. Next-generation
lithium (Li) batteries, which employ Li metal as the anode and intercalation or conversion materials as
the cathode, receive the most intensive interest due to their high energy density and excellent potential
for commercialization. Moreover, significant progress has been achieved in Li batteries attributed to the
increasing fundamental understanding of the materials and reactions, as well as to technological
improvement. This review starts by summarizing the electrolytes for next-generation Li batteries. Key
challenges and recent progress in lithium-ion, lithium–sulfur, and lithium–oxygen batteries are then
reviewed from the perspective of energy and chemical engineering science. Finally, possible directions
for further development in Li batteries are presented. Next-generation Li batteries are expected to pro-
mote the sustainable development of human civilization.

� 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since commercial lithium-ion batteries (LIBs) were first
released by Sony Corporation in 1991 [1], they have become essen-
tial energy storage devices that profoundly affect our daily life. In
particular, LIBs currently dominate the market in powering porta-
ble electronics and electric vehicles. The energy density of LIBs at
cell level has reached 260W�h�kg�1 and 700 W�h�L�1 after rapid
growth over the past 27 years [2,3]. In order to further sustain
the rapid development of portable electronics, electric vehicles,
and grid-scale energy storage, batteries with a higher energy den-
sity are eagerly anticipated. However, the energy density of LIBs is
approaching the theoretical value, due to the inherent limitations
of intercalation chemistry [4,5]. Thus, it is difficult to achieve a
breakthrough with improvements in current LIB processing tech-
nology. Therefore, emerging solutions are highly required.

To circumvent the bottleneck of intercalation chemistry in
LIBs, innovations in battery chemistry and the energy chemical
engineering to scale up the energy storage process is strongly
requested [6–10]. The intercalation chemistry of LIBs is based on
the single-electron reaction, in which lithium (Li) ions shuttle back
and forth between the anode and cathode during the electrochem-
ical redox reaction [11]. Both the anode and cathode are highly
reversible and haveminimal changes in their crystal structures dur-
ing intercalation and de-intercalation. Intercalation anodes, such as
graphite, exhibit specific capacities of 372 mA�h�g�1 [12]. Inter-
calation cathodes, such as layered LiCoO2 (LCO), spinel LiMn2O4

(LMO), layered LiNixMnyCozO2 (NMC) with different stoichiome-
tries, layered LiNi0.8Co0.15Al0.05O2 (NCA), and olivine LiFePO4 (LFP),
demonstrate specific capacities of up to about 250 mA�h�g�1

[11–13]. In general, the energy density of a battery can be estimated
by the specific capacity of the electrodes and the working voltage of
the battery. Hence, the limited specific capacity of intercalation
electrodes prevents the increase in energy density of LIBs.

Unlike intercalation electrodes, conversion anodes and cathodes
break and create chemical bonds during the insertion and extrac-
tion of Li ions. This process corresponds to the transfer of more
than one electron when 1 mol of discharge product forms, and
delivers higher specific capacity and energy density than the use
of intercalation electrodes [14]. Conversion anodes, such as Li, have
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specific capacities around 10 times greater than that of a graphite
anode. Conversion cathodes, such as sulfur (S) and oxygen (O2),
have specific capacities greater than 1600 mA�h�g�1 [15]. Employ-
ing conversion electrodes in a rechargeable battery system signifi-
cantly improves the energy density. For example, the theoretical
energy densities of Li–S and Li–O2 batteries can reach 2600 and
3500W�h�kg�1, respectively, which far exceed that of the current
LIBs [15].

In fact, the application of conversion electrodes in recharge-
able battery systems is not a new idea, as it first appeared before
the emergency of intercalation electrodes. However, the inherent
problems of conversion electrodes, such as short lifespan and sev-
ere safety concerns caused by large volume fluctuations and poor
reversibility of electrode reactions, greatly hinder their practical
application [14,16]. Nevertheless, tremendous practical progress
has been made in practical conversion electrodes, which has
greatly benefited from continual improvements in nanotechnol-
ogy, computational simulations, and advanced characterization
technologies, especially during the last two decades.

Among the various battery chemistries being investigated as
possible next-generation batteries, Li batteries, which employ Li
metal as the anode and conversion or intercalation materials as
the cathode, have become a topic of particular interest (Fig. 1)
because of the extremely high theoretical specific capacity
(3860 mA�h�g�1) and lowest reduction potential (�3.040 V vs. stan-
dard hydrogen electrode) of the Li metal anode [17]. When a Li
anode is paired with a conversion or intercalation cathode with a
high specific capacity, the Li battery system can deliver high energy
density and is superior to other battery systems. Among such sys-
tems, LIBs (which pair Li with an intercalation cathode), Li–S bat-
teries, and Li–O2 batteries have come under strong consideration,
with encouraging progress having been achieved in all three bat-
tery systems. Fundamental understanding of these battery chemis-
tries, in terms of the formation process of interphase, the electrode
reaction mechanism, and the electrolyte, is deepening and can sus-
tain the further development of rechargeable Li batteries. More-
over, advancements in energy chemical engineering provide
strong support for battery research, including proof-of-concept
prototype batteries, pilot production, and so on.

The electrolyte is an indispensable component of the battery
chemistry for next-generation Li batteries [18]. Currently used
electrolytes are divided into two classes: liquid and solid elec-
trolytes. Initial research into batteries involved liquid electrolytes
due to their high ionic conductivity and easy access. However, cer-
tain inherent features of liquid electrolytes limited the further
development of such batteries; for example, their volatility and
flammability posed a safety threat even with excellent battery
Fig. 1. Schematics of Li-ion, Li–S, and Li–O2 batter
management systems. Hence, solid electrolytes were developed
in order to address the strong demand for inherent safety. Never-
theless, the low ionic conductivity of solid electrolytes still hinders
their practical deployment in commercial batteries. Furthermore,
interfacial impendence between the electrode and solid electrolyte
is a critical problem. Tremendous progress has recently been
achieved in liquid and solid electrolytes due to the emergence of
new materials and technology, promoting research on next-
generation Li batteries.

This review summarizes challenges and recent progress related
to next-generation Li batteries, with a focus on Li-ion, Li–S, and Li–
O2 batteries with Li metal anodes. Other battery chemistries (e.g.,
aqueous Li batteries [19–21], silicon anodes [22,23], sodium bat-
teries [24–26], and redox flow batteries [27]) have recently been
summarized in other excellent reviews. First, the types and fea-
tures of liquid and solid electrolytes are summarized and com-
pared to provide a reference for assessing which electrolyte may
best be considered for next-generation Li batteries. Current strate-
gies for overcoming the drawbacks of liquid and solid electrolytes
are also reviewed. Second, challenges and recent progress in the
three most promising Li batteries—Li-ion, Li–S, and Li–O2 batter-
ies—are examined in retrospect from the perspective of energy
chemical engineering science. Finally, an outlook of next-
generation Li batteries is presented.
2. Choice of electrolyte

The electrolyte is an indispensable component in a battery sys-
tem, as it contributes to the formation of ion-conductive pathways
and combines with external electron pathways to construct a
closed loop. The bulk ionic conductivity of the electrolyte and the
connectivity of the ion-conductive channels and electron pathways
within the electrodes [28] significantly influence the major inter-
nal resistance of a battery. Therefore, increasing the bulk ionic con-
ductivity of the electrolyte and improving the contact area and
pattern between the electrolyte and the electrodes are vital for
both liquid and solid electrolytes. Furthermore, the stability of
electrolytes toward the electrodes is also a prerequisite for its prac-
tical application in a working battery [29].

In next-generation rechargeable Li batteries, the aforemen-
tioned three prerequisites should be simultaneously satisfied.
However, the use of the latest conversion electrodes introduces
new challenges. Although liquid and solid electrolytes have unique
characters, neither can fully satisfy all the requirements. Which
type of electrolyte is most compatible for next-generation Li bat-
teries? The following sections briefly discuss this question.
ies based on non-aqueous liquid electrolytes.
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2.1. Liquid electrolytes

A liquid electrolyte mainly consists of a non-aqueous solvent, Li
salts, and other additives [30]. The advantages of a liquid elec-
trolyte include its high ionic conductivity of about 10 mS�cm�1 at
room temperature and its excellent contact with porous electrodes,
which permit the construction of highly effective and intercon-
nected ion pathways [31–34]. Therefore, liquid electrolytes are
employed in most batteries today, including commercial batteries
and the lab-scale investigation of next-generation Li batteries [35].
The development of liquid electrolytes has already been traced in
impactful and insightful reviews [18,30,34,36,37].

The success of liquid electrolytes in LIBs can be attributed to the
stable solid electrolyte interphase (SEI) that forms on most anodes
and cathodes, which prevents constant side reactions and ensures
the stable cycling of batteries [30,38]. However, when it comes to
conversion electrodes in next-generation Li batteries, a stable SEI
no longer maintains easily owing due to the drastic changes in
volume and crystal during charge and discharge, which limit the
lifespan of Li batteries and sometimes threaten the safety of
batteries [39]. The growth of Li dendrites induced by an uneven
and unstable SEI can penetrate the separator, leading to short cir-
cuit and thermal runaway. In addition, the intermediate discharge
products of conversion electrodes, such as polysulfides in Li–S
batteries, can dissolve and diffuse in the liquid electrolyte, which
further endangers the originally brittle SEI on the Li anode and
can easily cause the battery to overcharge [40]. The intermediate
discharge products in Li–O2 batteries, such as the oxygen radical
O�2�, can rapidly react with liquid electrolytes and destroy the
stability of the whole battery system [41].

Therefore, a specific electrolyte formulation should be chosen
for a specific battery chemistry, after many trial-and-error experi-
ments and with the guidance of simulations. The electrochemical
stability window, chemical stability toward electrodes, wetting
ability, cost, and other factors should be considered when choosing
a liquid electrolyte.

There are two main types of commonly used liquid electrolytes:
carbonate electrolytes for Li-ion batteries, and ether electrolytes
for Li–S and Li–O2 batteries. For Li-ion batteries, 4 V- or 5 V-class
cathode is employed; therefore, the electrolyte should be able to
tolerate a high voltage. Hence, a carbonate electrolyte is chosen
instead of an ether electrolyte. The electrochemical stability win-
dow of carbonate electrolytes is greater than 4.3 V, which is higher
than that of an ether electrolyte (< 3.5 V) in dilute electrolyte. For
Li–S and Li–O2 batteries, the voltage is usually less than 3.5 V.
Moreover, polysulfides and oxygen radicals can react with carbon-
ate solvents, causing irreversible damage to the electrolyte. There-
fore, ether electrolytes with high chemical stability are commonly
employed. To summarize, the unique features of different liquid
electrolytes should be taken into consideration when choosing an
electrolyte.

In addition, the inherent disadvantages of liquid electrolytes,
such as their limited electrochemical stability window, volatility,
flammability, and leakage, are hindrances to their use as promising
candidates for next-generation Li batteries, which require
increased safety and environmental friendliness.

To overcome these drawbacks of liquid electrolytes and render
them appropriate for next-generation Li batteries, great progress
has been made in electrolyte formulation in terms of solvent, Li
salts, and additives, with a focus on stabilizing the SEI, suppressing
the dissolution and reaction of intermediate discharge products,
widening the electrochemical stability window, and improving
the nonflammability of liquid electrolytes when coupled with con-
version electrodes. New electrolyte formulations are continually
emerging, such as concentrated electrolytes [42–44] and fluori-
nated electrolytes [45,46]. In spite of significant advances, the
practical demands for a liquid electrolyte are far from being met.
However, new efforts are ongoing.

2.2. Solid electrolytes

Solid electrolytes have drawn a great deal of attention as substi-
tutes for liquid electrolytes [10,47–49]. In addition to overcoming
the inherent drawbacks of liquid electrolytes such as volatility,
flammability, and leakage, the mechanical strength of solid elec-
trolytes is much higher than that of liquid electrolytes, and can
suppress penetration by Li dendrites. The polysulfides in Li–S bat-
teries cannot dissolve in a solid electrolyte, so the severe shuttle
effect that exists in liquid electrolytes can be avoided. However,
the discharge and charge mechanisms of a sulfur cathode change
when a solid electrolyte is used. The stability of the solid elec-
trolyte toward the oxygen radical, O�2�, is enhanced in Li–O2 bat-
teries due to the reduced reactivity. Furthermore, the calculated
electrochemical stability window of a solid electrolyte is generally
greater than 5 V, which is higher than that of a liquid electrolyte
[50,51]. When a solid electrolyte is applied in a practical battery
system, its electrochemical stability window may decrease signifi-
cantly. For example, the decomposition of sulfide solid electrolytes
is facilitated in full batteries due to carbon in the electrodes [52].

In general, solid electrolytes can be classified into two types:
polymer and inorganic electrolytes [53]. The ionic conductivity of
a solid electrolyte is usually lower than that of a liquid electrolyte
at room temperature, as solid and liquid electrolytes have totally
different lithium ion-transportation mechanisms. The ionic con-
ductivity of a polymer electrolyte is around 10�6–10�5 S�cm�1 at
room temperature, whereas the ionic conductivity of an inorganic
solid electrolyte is around 10�5–10�3 S�cm�1 [10]. In addition to its
inherent ionic conductivity, the thickness of a solid electrolyte is
important. If a solid electrolyte is too thick, the internal resistance
of the working battery will be considerably higher than that of a
battery with a liquid electrolyte [54].

In the last three decades or more, the ionic conductivity of solid
electrolytes has increased significantly, such that it is foreseeable
that ionic conductivity may no longer be the greatest obstacle in
the future development of practical solid electrolytes. Rather, the
main obstacle now comes from the interfaces between solid elec-
trolytes and the electrodes [55,56]. The electrode in a practical bat-
tery is usually solid and porous. Thus, the interfaces between a
solid electrolyte and the electrodes are connected in a ‘‘dot-to-
dot” style, compared with the wetting of the electrode materials
that occurs with liquid electrolytes. As a result, the interfacial
resistance of a battery with a solid electrolyte is much greater
due to poor contact, which deteriorates the performance of the bat-
tery. The interfacial resistance between a polymer electrolyte and
the electrodes is less than that between an inorganic solid elec-
trolyte and the electrodes, due to a larger effective contact area.
However, it is necessary to reduce the interfacial resistance further
in order for such batteries to be practical in operation. In recent
years, several methods have been promoted to decrease interfacial
resistance. These include in situ-formed SEI [57,58] and an inor-
ganic coating on the electrolyte [59–63]. The effectiveness of these
methods over a long cycle life with dynamic interfaces should be
investigated further.

The unique features of each type of solid electrolyte must be
considered when choosing an electrolyte for a specific type of
battery chemistry within a working battery. The application of a
polymer electrolyte is generally limited to 4 V-class batteries,
which employ LFP as the cathode, due to the inherently limited
electrochemical stability window of polymer electrolytes.

Inorganic electrolytes can be classified into several types, such
as oxide, sulfide, and hydride electrolytes, among others. Oxide-
based solid electrolytes have high chemical and electrochemical
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stability, high mechanical strength, and a high electrochemical oxi-
dation voltage, making it feasible to use these electrolytes in bat-
teries with a high-voltage cathode (> 4 V). However, oxide-based
solid electrolytes are brittle and expensive in large-scale produc-
tion. Sulfide-based solid electrolytes have the advantages of high
conductivity, good mechanical strength, good mechanical flexibil-
ity, and low grain-boundary resistance. However, their application
is limited by their low oxidation stability, sensitivity to moisture,
and poor compatibility with cathode materials. Thus, the rational
choice of a solid electrolyte should be based on a comprehensive
understanding of each type, and on the understanding that each
solid electrolyte has its own limitations.

Solid electrolytes have certain inherent drawbacks: Both the
cost and the complexity of the fabrication of solid electrolytes sig-
nificantly restrict their scalable production. Furthermore, side
reactions occur on the surface of a solid electrolyte when exposed
to water or humid air [64,65], changing the original features of the
solid electrolyte. Therefore, strict preservation conditions are
required. When in contact with a Li anode, side reactions also occur
for most solid electrolytes; the resulting decomposition products
further complicate the interfacial issues [66,67]. It is still unclear
whether detrimental reactions occur for cathode sides, so more
investigation is required.

To summarize, solid electrolytes are attractive in their ability to
overcome several significant problems facing next-generation Li
batteries, such as Li dendrites and the polysulfide shuttle effect.
However, both challenges and opportunities exist in the explo-
ration of solid electrolytes for rechargeable batteries, including
ion transportation in multiphase, interfacial structure and compo-
nents, the dynamic evolution of interfaces in a working battery,
surface stability, cost and materials processing, and compatibility
with cell assembly manufacturing.
Fig. 2. Challenges affecting the Li anode in rechargeable batteries. (Reproduced
from Ref. [6] with permission of American Chemical Society, � 2017)
3. Lithium batteries

Li batteries are endowed with high energy density due to the
extremely high theoretical specific capacity (3860 mA�h�g�1) and
lowest reduction potential (�3.040 V vs. standard hydrogen elec-
trode) of the Li anode. Therefore, Li batteries have attracted a great
deal of interest and investment as promising candidates for next-
generation batteries.

The study of Li batteries began in the 1950s. Commercial Li bat-
teries were released onto the market by Moli Energy Corporation,
but failed because the batteries frequently caught on fire. When
Li batteries catch on fire, it is usually a result of dendrite
growth—a problem that still hinders the practical application of
Li batteries today. Due to advances in nanotechnology, computa-
tional simulation, and advanced characterization technologies,
the fundamental understanding of the formation and growth of
Li dendrites has increased, and several strategies to protect the Li
anode have emerged in recent years. Li anode can be paired with
an intercalation or conversion cathode in order to construct a full
battery. As mentioned earlier, Li-ion, Li–S, and Li–O2 batteries are
the three most representative candidates of Li batteries. A conser-
vative estimate places the energy density of these batteries at
greater than 300W�h�kg�1, and perhaps as high as 500W�h�kg�1

under practical conditions in future. Moreover, several advanced
liquid and solid electrolytes have been demonstrated to be
compatible within these batteries in the laboratory, thus providing
more possibilities for next-generation Li batteries.

As mentioned above, drastic volume change, poor reversibility
of electrode reactions, and complex interfacial issues are inevitable
while using conversion electrodes. In addition, specific issues
must be addressed for Li-ion, Li–S, and Li–O2 batteries, respec-
tively, due to the different conversion cathodes. Specific issues
and corresponding solutions have been thoroughly reviewed in
recent insightful publications for Li-ion [6,7,39,68], Li–S
[40,69,70], and Li–O2 [41,71,72] batteries. The current review will
briefly summarize the key scientific and technological issues,
historical research, and latest progress in Li-ion, Li–S, and Li–O2

batteries, with the goal of providing future scenarios for next-
generation Li batteries.

3.1. Li-ion batteries

The LIBs discussed in this review differ from the commercial
LIBs that are presently on the market, as the former employ a Li
metal anode to replace the typical graphite anode (Fig. 1(a)). The
matched cathodes can be comprised of layered LCO, spinel LMO,
layered NMC with different stoichiometries, layered NCA, or oli-
vine LFP. Conversion reactions occur on the anode, and intercala-
tion reactions occur on the cathode. Compared with commercial
LIBs, the use of a Li anode increases the energy density by decreas-
ing the mass of the anode and improving the quantity of cathode.
The lower reductive potential of the Li anode (0.2 V lower than that
of a graphite anode) also contributes to the increase in energy den-
sity. Compared with Li–S and Li–O2 batteries, LIBs have fewer tech-
nical challenges because intercalation cathodes are relatively more
stable than conversion cathodes. LIBs with a Li metal anode may be
the first to have a major breakthrough toward practical application.
However, challenges and opportunities coexist. At present, the
challenges that must be dealt with in the development of LIBs
mainly come from the Li anode, the electrolyte, and the interface.

Li anode can react with almost any electrolyte due to its extre-
mely low reduction potential. Its reaction products constitute the
SEI on the Li anode, which was first named by Peled in 1979
[73]. The generated SEI is heterogeneous and fragile, and has varied
spatial resistance; it initially induces uneven Li deposition under-
neath and eventually induces Li dendrites by means of a self-
amplifying process [32]. During the repeated charge and discharge
processes, Li dendrites give rise to low coulombic efficiency, con-
stant electrolyte consumption, cracking and repair of the SEI, and
the formation of a considerable amount of dead Li [74]. As men-
tioned earlier, Li dendrites can even penetrate the separator and
connect with the cathode, leading to a short circuit and fire
(Fig. 2) [6]. Therefore, Li dendrites have a significant negative effect
on the stabling cycling of batteries. In Li batteries, the formation
and growth of Li dendrites can be suppressed and even avoided
by forming a uniform and stable SEI, which is necessary in order
for these batteries to achieve practical application.

Considerable effort has been devoted to understanding and sup-
pressing the formation and growth of Li dendrites since the 1950s
[7,39]. A fundamental understanding of the formation and growth
of Li dendrites is a prerequisite for developing effective strategies
to suppress Li dendrites. With the help of advanced characteriza-
tion tools, such as electron microscopes [75,76], spectral analyzers
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[77,78], electrochemical analyzers [79–82], and isotope labeling
[83,84], the components and structure of the SEI are gradually
being disclosed. The SEI is composed of both inorganics (Li2O,
Li2CO3, and LiF) and organics (ROLi, ROCO2Li, RCOOLi) (Fig. 3(a))
[73]. The structure of the SEI is currently viewed in terms of the
mosaic model and the multilayer model [85]. Recently, Cui and
co-workers [76,86] investigated the components and structure of
SEI using cryo-electron microscopy to preserve the pristine SEI fur-
thest. The mosaic and multilayer structures of the SEI have also
been witnessed in different electrolytes. In an electrolyte contain-
ing fluoroethylene carbonate (FEC), an ordered multilayer SEI was
observed to favor the uniform Li stripping and reduce the Li loss
during cycling. The crystalline grain distributions within the SEI
are the critical difference between a mosaic SEI and a multilayer
SEI (Fig. 3(b)) [86]. They observed that Li dendrites preferred to
grow along the <111> in carbonate electrolytes, in terms of
single-crystalline nanowires. In addition to experimental tools,
computational simulations contribute to an understanding of the
deposition behavior of Li and the decomposition of the electrolyte
[87]. Brissot, Chazalviel, and co-workers [88,89] correlated the for-
mation of Li dendrites with concentration gradients by simula-
tions. When the ionic concentration drops to zero with a large
current density on the negative electrode, at a time known as
Sand’s time, Li dendrites are initiated. All of the models that have
been reported were obtained based on specific conditions, so each
has its own limitations when being applied to a practical system.

Many strategies have been proposed to suppress Li dendrite, in
line with the increasing fundamental understanding of the forma-
tion and growth of dendrites. In situ SEI formation, an ex situ coat-
ing or barrier layer, and structured Li anodes are the main
strategies for suppressing the formation of Li dendrites [7,90].

In situ SEI formation focuses on improving the uniformity and
stability of the SEI by regulating the electrolyte components—that
is, the solvents [45,91], Li salts [92–94], and additives [95–100]. Li
ions are solvated by solvents, anions, and additives, forming a sol-
vation sheath with specific components and a specific structure
[101]. The solvation sheath of the Li ions significantly affects the
components and structure of the SEI that forms. The solvents and
anions in the solvation sheath preferably react with the Li anode,
compared with free solvents and anions, and their decomposition
products dominate in the SEI. The solvents in the solvation sheath
are also selective. Cyclic carbonate solvents are preferably
recruited into the solvation sheath, in comparison with linear
carbonate solvents, which affects the subsequently formed SEI
Fig. 3. (a) Scheme of SEI formation on the Li anode in alkyl carbonate and in 1,3-dioxolan
and the corresponding effects on the Li stripping process. ((a) Reproduced from Ref. [73] w
Elsevier, � 2018)
(Fig. 4(a)) [102]. Even when they are within the solvation sheath
at the same time, solvents such as FEC and ethylene carbonate
(EC) have a preferred order [103]. In addition, Li salts and additives
in the solvation sheath significantly impact the uniformity and sta-
bility of the SEI. Recently, Zhang and co-workers [104,105] recently
demonstrated that uniform Li deposition and stable cycling can be
achieved by concurrently regulating the solvents and anions in the
solvation sheath. The introduction of FEC and LiNO3 into the solva-
tion sheath contributes to increasing the content of LiF and LiNxOy

in order to promote Li diffusion and uniform deposition (Fig. 4(b))
[104]. Furthermore, the concentration of Li ions also changes the
solvation sheath [42,46,93,106]. With an increase in Li concentra-
tion, free solvents and anions are gradually solvated. In concen-
trated electrolytes, the decomposition products of anions
dominate in the SEI and determine the uniformity and stability.
It has been reported [93] that 4 mol�L�1 Li bis(fluorosulfonyl)imide
(LiFSI) in dimethoxyethane (DME), as proposed by Zhang and co-
workers, has been proved to be effective in improving coulombic
efficiency and regulating uniform Li deposition (Fig. 4(c)) [93,94].

As an alternative, ex situ coating or a barrier layer has been pro-
posed in order to block dendrites. High mechanical strength, uni-
formity of Li ion flux, and low interfacial resistance are three
prerequisite conditions for ex situ coating to be employed in Li bat-
teries [7]. Thus far, carbon materials [107–109], polymers [110–
113], and inorganics [114–118] are the preferred choices for ex situ
coating. Carbon materials have been chosen for ex situ coating due
to their high mechanical strength, high electrical conductivity,
excellent chemical and electrochemical stability, and tunable
structures. Cui and co-workers [119] designed an ex situ coating
using interconnected hollow carbon nanospheres in order to avoid
the penetration of Li dendrites and prevent cracks in the SEI. This
carbon coating also regulated Li ion plating to form columnar Li
deposition (Fig. 5(a)) [119]. Polymers have been chosen for ex situ
coating due to their flexibility, controllability, and diversity. A
polymer with high chemical/electrochemical stability is essential
in order to adapt to the extremely high reactivity of the Li metal
anode. Guo, Wen, and co-workers [120] designed a flexible and
smart Li polyacrylic acid (LiPAA) ex-coating to accommodate the
dynamic volume change during Li plating/stripping processes by
means of self-adapting interface regulations (Fig. 5(b)) [120]. This
smart coating could significantly reduce the side reactions and
improve battery safety, due to the high elasticity and stability of
the LiPAA polymer. Inorganic materials with high mechanical
strength, including inorganic solid electrolytes, have also been
e-based electrolytes. (b) Schematic of the mosaic and multilayer SEI nanostructures
ith permission of Elsevier,� 2000; (b) reproduced from Ref. [86] with permission of



Fig. 4. (a) Schematic of the solvation sheath of Li ions in non-aqueous electrolytes, and the change of the solvation sheath with increased EC content. DMC: dimethyl
carbonate. (b) Schematic of the solvation sheath of Li ions while FEC and LiNO3 are concurrently present, and corresponding in situ optical images of the Li deposition process.
(c) A solvation sheath of Li ions in concentrated electrolyte, and the corresponding Li deposition morphology (scale bar, 10 lm). PC: propylene carbonate. ((a) Reproduced
from Ref. [102] with permission of American Chemical Society, � 2013; (b) reproduced from Ref. [104] with permission of Wiley, � 2018; (c) reproduced from Ref. [94] with
permission of American Association for the Advancement of Science, � 2015, and from Ref. [93] with permission of the authors under the terms of the CC-BY 4.0 license,
� 2015)
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chosen as promising ex situ coating materials. However, inorganics
are generally brittle and require complex materials processing.
Therefore, a rational combination of inorganicmaterials and polymers
is a possible choice for constructing an ex situ coating that is both
flexible and rigid [121]. An artificial soft–rigid protective layer, in
which poly(vinylidene-co-hexafluoropropylene) (PVDF-HFP) acts
as the soft part and LiF acts as the rigid part, was recently proposed
by Huang and co-workers (Fig. 5(c)) [122]. The layer was able to
suppress Li dendrites and prevent the random floating of isolated
Li in order to form a stable interface, which guarantees long stable
cycling for a battery. Composite solid electrolytes have been used
to suppress Li dendrites in Li batteries [123]. Anions were tethered
to provide a higher Li transference number [124], and uniform Li
ion flux and deposition were achieved. Composite solid electrolytes
also exhibited good stable cycling in all solid-state batteries.

Constructing a structured Li anode is another way to suppress Li
dendrite formation [125–129]. The biggest advantage of structured
Li anode is that it can reduce the real current density due to its
large surface area, much pore and connecting structures [130]. As
indicated by the aforementioned Sand’s time model, a lower cur-
rent density leads to a greater Sand’s time. Thus, the formation of
Li dendrites is delayed by a low real current density. To further
guide Li ions to deposit uniformly on a structured anode, lithio-
philic sites have been proposed. For example, ZnO [131,132], Si



Fig. 5. (a) The carbon nanosphere coating serves as an artificial layer to protect the Li anode (blue). (b) A flexible coating suppresses Li dendrites by means of self-adapting
interface regulation. Inset: Chemical structure and stress–strain curve of the LiPAA gel polymer. (c) A soft–rigid artificial layer designed to protect the Li anode from the
growth of dendrites. APL: artificial protective layer. ((a) Reproduced from Ref. [119] with permission of Nature Publishing Group, � 2014; (b) reproduced from Ref. [120] with
permission of Wiley, � 2017; (c) reproduced from Ref. [122] with permission of Wiley, � 2018)
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[133], nitrogen (N)-doped graphene [134], and MgO [135] have
been confirmed to be lithiophilic. N-doped graphene was adopted
as a structured Li anode in order to regulate Li nucleation and sup-
press dendrite formation (Fig. 6) [134]. The pyridinic and pyrrolic
nitrogen in the N-doped graphene is lithiophilic, and thus guides
Li nucleation to achieve uniform Li deposition.
Fig. 6. (a) Schematic of the Li nucleation and growth process on N-doped graphene (NG
species and their binding energy (Eb) with Li. G: graphene; prN: pyrrolic nitrogen; pnN: p
the bulk phase. (Reproduced from Ref. [134] with permission of Wiley, � 2017)
The discussion above reviewed the challenges of employing Li
metal as an anode and summarized the strategies that may be used
to overcome these issues. In addition to the issues related to Li
anodes, the high specific capacity of the cathode presents chal-
lenges. Ni-rich and Li-rich cathode materials have been developed.
However, the inherent stability of these materials is poor, due to
) and Cu foil; (b) the morphology of Li deposition on NG and Cu foil electrode; (c) N
yridinic nitrogen; qN: quaternary nitrogen on the edge; qnN: quaternary nitrogen in
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the irreversible changes that occur in the crystal structure and the
interfacial phase, such as Li/Ni mixing, the formation of micro-
cracks, and the highly reactive surface [136,137]. The dissolution
of transition metal ions also destroys the SEI on the anode. To uti-
lize a more specific capacity, the batteries must be charged above
4.5 V or even 5.0 V, which is challenging for the stability of cathode
[138,139]. The electrolyte must also be updated in order to tolerate
the concurrent high reductive and oxidative reactivity.

In summary, the major challenges affecting the development of
LIBs originate from the Li anode. Many effective strategies have
been applied in the laboratory to overcome the formation and
growth of Li dendrites. Recent advances in improving the
utilization of the Li anode are summarized in Table 1
[45,91,93,104,112,140–143]; the examples provided here are more
attractive in regard to practical application than those in other
publications. The combination of electrolyte formulation and a
structured anode is a promising direction. For practical applica-
tions, LIBs should be tested under lean electrolyte conditions, such
as in pouch cells. LIBs still have a long way to go before they can
become the next-generation Li batteries.

3.2. Li–S batteries

Li–S batteries, which are comprised of a Li anode and a S
cathode (Fig. 1(b)), are capable of utilizing a multi-electron
Table 1
Recent advances in improving the coulombic efficiency (CE) of Li|Cu batteries based on liq

Label Category Strategy Coulombic efficiency

1 Electrolyte High-concentration electrolyte 98.4% (4.0 mA�cm�2, 1.
2 Electrolyte Dual-salts electrolyte

with 0.05 mol�L�1 LiPF6
—

3 Electrolyte FEC co-solvent 98.5% (0.5 mA�cm�2, 1.
4 Electrolyte FEC co-solvent with LiNO3 —

5 Electrolyte Fluorinated solvent 99.2% (0.5 mA�cm�2, 1.
6 Structured anode N-doped graphitic carbon

foams
99.6% (2.0 mA�cm�2, 4.

7 Artificial coating PDMS film with nanopores 98.2% (1.0 mA�cm�2, 1.
8 Artificial coating Cu3N + SBR composite artificial

SEI
97.4% (1.0 mA�cm�2, 1.

9 Artificial coating 3D glass fiber cloth 98.0% (0.5 mA�cm�2, 0.

LiTFSI: Li bis(trifluoromethane sulfonyl)imide; LiBOB: Li bis(oxalato)borate; EMC: ethy
roethyl-20 ,20 ,20-trifluoroethyl ether; DOL: 1,3-dioxolane; PDMS: poly(dimethylsiloxane);

Fig. 7. (a) Illustration of the two plateaus and the corresponding electrochemical re
(b) Schematic of the issues affecting Li–S batteries. ((a) Reproduced from Ref. [70] with p
� 2017)
electrochemical reaction between S and Li to release higher energy
density. The discharge process shows two plateaus at 2.3 and 2.1 V
in ether liquid electrolytes; the upper and lower plateaus have
been assigned to the conversion of S8 to Li2S4 and that of Li2S4 to
Li2S, respectively (Fig. 7(a)) [40,70]. The final discharge product is
Li2S. In the subsequent charge process, Li2S is converted to S8
and undergoes the formation of a lithium polysulfide intermediate.
S and Li are lightweight elements, which gives them a high specific
capacity of 1672 and 3860 mA�h�g�1, respectively. Therefore, the
theoretical energy density of Li–S batteries is as high as
2600W�h�kg�1 [15,69]. Even considering the other parts of a bat-
tery at the pack level, the energy density may still be greater than
400W�h�kg�1. In addition, sulfur is abundant and low in cost,
which decreases the entire cost of Li–S batteries and makes them
competitive as a form of clean energy storage system in the future
[144,145]. Unlike Li–O2 batteries, Li–S batteries operate in a closed
system, which prevents potential explosive danger when the com-
ponents are exposed to air. The high energy density, low cost, and
relative safety of Li–S batteries make them attractive candidates
for next-generation Li batteries.

However, many issues still plague the development of Li–S
batteries (Fig. 7(b)) [69]. In general, the cathodic materials in
Li–S batteries comprise elemental sulfur in order to adequately uti-
lize the advantages of the multi-electron conversion reaction.
Lithiated sulfur, either polysulfides or Li2S2/Li2S, can be also used
uid electrolyte.

Electrolyte Year & Ref.

0 mA�h�cm�2, 1000 cycles) 4.0 mol�L�1 LiFSI in DME 2015 [93]
0.6 mol�L�1 LiTFSI + 0.4 mol�L�1

LiBOB + 0.05 mol�L�1 LiPF6 in EC/EMC
2017 [140]

0 mA�h�cm�2, 40 cycles) 1.0 mol�L�1 LiPF6 in FEC/DMC 2017 [91]
1.0 mol�L�1 LiPF6 + 0.2 mol�L�1 LiNO3

in FEC/DMC/DME
2018 [104]

0 mA�h�cm�2, 500 cycles) 1.0 mol�L�1 LiPF6 FEC/FEMC/HFE 2018 [45]
0 mA�h�cm�2, 300 cycles) 1.0 mol�L�1 LiTFSI in DOL/DME with

2% LiNO3

2018 [141]

0 mA�h�cm�2, 100 cycles) 1.0 mol�L�1 LiTFSI in DOL/DME 2017 [112]
0 mA�h�cm�2, 100 cycles) 1.0 mol�L�1 LiPF6 in EC/DEC with 10%

FEC
2017 [142]

5 mA�h�cm�2, 90 cycles) 1.0 mol�L�1 LiTFSI in DOL/DME with
2% LiNO3

2016 [143]

l methyl carbonate; FEMC: fluoroethyl methyl carbonate; HFE: 1,1,2,2-tetrafluo-
SBR: styrene butadiene rubber; DEC: diethyl carbonate.

action steps in Li–S batteries. DOD: depth of discharge; DOC: depth of charge.
ermission of Wiley, � 2018; (b) reproduced from Ref. [69] with permission of Wiley,
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as starting electrode materials. In fact, the electrochemical charac-
teristics of lithiated sulfur are the same as those of elemental sulfur
after the first cycle [69]. One of the major obstacles in the utiliza-
tion of elemental sulfur as a cathode is the inherently low elec-
tronic conductivity of its discharge product, Li2S (�10�30 S�cm�1

at 25 �C). The evident structural and morphological changes that
occur during cycling result in poor contact between sulfur and its
intermediate discharge products, and the current collector. The
intermediate polysulfides dissolve in the ether electrolyte. These
dissolved polysulfides can shuttle between the anode and cathode
during cycling, and react with the Li anode and S cathode to form
an internal chemical reaction loop. These problems give rise to a
loss of active material, poor lifespan, and low coulombic efficiency.

Pioneer Li–S batteries were first demonstrated in the 1960s.
However, Li–S batteries were hindered by their low specific capac-
ity and rapid capacity, and interest in them faded in subsequent
decades. In 2009, Nazar and co-workers [146] proposed the use
of a highly ordered and mesoporous carbon, CMK-3, to encapsulate
sulfur (Fig. 8(a)). The use of porous and electric carbon materials
led to a major breakthrough in the development of Li–S batteries,
as it became possible to precisely constrain the sulfur within its
conductive channels. This strategy gives Li–S batteries a high speci-
fic capacity and stable cycling, and opens up the possibility for fur-
ther investigation into Li–S batteries.

Present strategies to improve the utilization of sulfur and
suppress shuttle include the following: ① employing porous and
electric host materials to encapsulate the sulfur, with different
kinds of carbon materials commonly being used for this purpose,
such as porous carbon, graphene [147,148], carbon nanotubes
(CNTs) [147,149,150], hollow carbon [151,152], and their nano-
Fig. 8. (a) Schematic of sulfur (yellow) confined in the interconnected pore structure
discharging–charging with lithium. (b) Schematic of the nano-architectured graphene/ca
GSH: graphene/single-wall carbon nanotube (SWCNT) hybrids; PC: pyrolytic carbon; AP
Nature Publishing Group, � 2009; (b) reproduced from Ref. [153] with permission of W
composites [153]; ② introducing a physical or chemical interlayer
onto the surface of the S particles, cathode, and separator in order
to suppress the diffusion of polysulfides [154,155].

Investigations into porous and electric host materials first
focused on non-polar host materials, and then included polar host
materials. Non-polar host materials are represented by various
kinds of carbon materials. The addition of porous and conductive
carbon materials increases the electronic conductivity of a com-
posite cathode in order to improve the utilization of sulfur and
achieve a high specific capacity. Therefore, the two main research
directions in this area involve designing the porous structure and
the electronic conductivity of carbon materials.

Regarding the porous structure of carbon materials, the size,
shape, topology, and combination of pores have been optimized
for encapsulating sulfur and better suppressing polysulfide disso-
lution. Archer and co-workers [152] have employed hollow carbon
spheres with a diameter of 200 nm to encapsulate sulfur. The hol-
low structure decreases the loss of active materials by means of
physical confinement. Moreover, the side effects induced by the
volume change between S and Li2S are also suppressed by the hol-
low structure. In general, a Li–S battery shows better performance
when hollow-structured host materials are used than when open-
structured materials are used.

Regarding improvements in the electronic conductivity of car-
bon materials, an excellent rate performance and high specific
capacity are achieved using CNTs, graphene, and their composites,
albeit less than when compared with common porous carbon
[156]. Zhang and co-workers [153] have rationally constructed a
hybrid nano-architectured graphene/CNT@porous carbon as a sul-
fur host (Fig. 8(b)). The CNT and graphene contribute to improving
of mesoporous carbon, the synthesis of a composite cathode, and the subsequent
rbon nanotube (CNT)@porous carbon hybrid and its performance in Li–S batteries.
C: activated pyrolytic carbon. ((a) Reproduced from Ref. [146] with permission of
iley, � 2014)
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electronic conductivity and bearing the volume change of the
active materials, while the porous carbon provides abundant space
and acts as a nanoreactor to encapsulate sulfur and confine the
polysulfides. The abovementioned carbon materials can also be
employed as the interlayer on the separator or cathode in order
to intercept and reactivate polysulfides.

Polar host materials have been developed in order to remedy
the weak polarity of carbon materials and enhance the combina-
tion with polysulfides, thus suppressing their shuttle and increas-
ing sulfur utilization. These materials can be classified into four
types: ① N/O/S-doped polymer materials, such as polyaniline
[157], polypyrrole [158], and polyethylene glycol [159]; ② N/O/
S-doped carbon materials, such as N-doped graphene [160], N-
doped hierarchical carbon [161–163], and specific N-containing
organic frameworks [164]; ③ inorganic transition metal com-
pounds, such as sulfides [165], oxides [166,167], phosphides
[168], and carbides [169]; and ④ organic–inorganic hybrid materi-
als, such as metal–organic frameworks [170]. The stable cycling
performance of Li–S batteries is enhanced by the introduction of
polar hosts, as compared with non-polar hosts. Zhang and co-
workers [171] have demonstrated that both polar and conductive
titanium carbide (TiC) can enhance the electrochemical kinetics
of a sulfur cathode, facilitating the liquid–liquid transformation
Fig. 9. (a) Illustration of the mechanism of polar host materials in enhancing bindin
voltammetry (CV) of Li2S6 symmetric cells with polar host materials. Scanning electron
carbon-fiber paper. (b) Schematic mechanism of a routine polypropylene (PP) separator
shuttle. SEM images and optical images of the PP separator and Janus separator. ((a) Repr
[155] with permission of Wiley, � 2016)
of polysulfides and the liquid–solid nucleation/growth of Li2S at
the same time (Fig. 9(a)). This works confirmed that electronic con-
ductivity is vital for a polar host—information that has further
guided the design of host materials for Li–S batteries. Moreover,
the proposal of Li bond and the simulations further provided a
deep and fundamental comprehension to guide the rational design
of cathode materials [172–174].

Nevertheless, host materials are insufficient to totally encapsu-
late sulfur, and the diffusion of polysulfides toward the anode is
inevitable in general cell configurations. To further restrict the dif-
fusion of polysulfides and to reactivate polysulfides, a novel battery
configuration has emerged for Li–S batteries. An interlayer on the
surface of the cathode or separator and modified separators are
introduced with the aim of affecting the electrostatic interaction,
chemical effects, and even electronic conductivity. Recent progress
in the development of advanced interlayer/separators to improve
the stability of Li–S batteries has been achieved in the following
aspects: ① shielding the diffusion of polysulfides to the anode
and suppressing the shuttle; ② reactivating dead sulfur-
containing species in batteries. Polymers [154,175,176], carbons
[177–179], oxides [180,181], and their hybrids [148] have been
applied as various functional interlayers for better battery perfor-
mance. Unfortunately, these effects also delay the diffusion of Li
g and charge transfer. Electrochemical impedance spectroscopy (EIS) and cyclic
microscopy (SEM) images of the initial nucleation of Li2S on different surfaces. CP:
and Janus separator with a cellular graphene framework (CGF) layer in suppressing
oduced from Ref. [171] with permission of Wiley, � 2016; (b) reproduced from Ref.
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ions and may decrease the rate performance of the batteries.
Manthiram and co-workers [177] have reported that a multi-
walled CNT interlayer served as a pseudo upper current collector
to lower the charge transfer resistance and trap polysulfides. The
intrinsic flexibility of the multi-walled CNT interlayer allowed it
to endure the volume change during cycling, leading to both a high
specific capacity and excellent battery stability. The work demon-
strated the enhanced performance of Li–S batteries by designing a
new cell configuration with an interlayer, thus opening up a new
research field for Li–S batteries. A Janus separator was designed
by coating mesoporous cellular graphene framework (CGF)/
polypropylene (PP) on the separator in order to promote sulfur uti-
lization (Fig. 9(b)) [155]. The porous PP layer can prevent short cir-
cuiting, while the CGF reactivates sulfur-containing species due to
close contact with the sulfur cathode.

Most of the strategies described above are achieved with rela-
tively low areal loadings of sulfur (< 2 mg�cm�2). However, this
low loading of sulfur is not competitive with commercial LIBs. To
pave the way for practical Li–S batteries, a high loading of sulfur
is essential, generally higher than 2 mg�cm�2. However, the effec-
tiveness of the abovementioned strategies is doubtful with a high
loading of sulfur, which is an essential parameter for practical
and viable Li–S batteries.

Moreover, dissolved polysulfides damage the SEI on the Li
anode and form a new passivation layer, thus increasing the inter-
facial resistance [182]. Although LiNO3 is an effective additive for
protecting the Li anode [183], this protection decreases with an
increased number of cycles. New strategies are required to protect
the Li anode and sustain long cycles.

In addition to materials’ innovations, the reaction mechanism of
the complex multi-electron phase transition is worth investigating,
which will provide new opportunities to enhance the performance
of Li–S batteries. The recently emerging strategies of redox media-
tors and reaction promoters [184–186] are representative exam-
ples of research that focuses on the fundamental chemical
conversion in order to promote practical conditions for Li–S batter-
ies (i.e., high loading of active materials and lean electrolyte). For
practical Li–S batteries, the excess mass of lithium and the
electrolyte/sulfur (E/S) ratio should be reduced, aside from improv-
ing the areal loading of sulfur [187]. Of course, new challenges will
emerge; however, these must be solved in order for Li–S batteries
to be commercialized in the future.

3.3. Li–O2 batteries

Li–O2 batteries employ oxygen (not natural air at present) as
the cathode to pair with a Li anode (Fig. 1(c)). Primary Li–O2 batter-
ies were firstly proposed by Blurton and Sammells [188] in 1979;
their rechargeability was then demonstrated in the mid-1990s by
Abraham and Jiang [189], who used a carbon substrate for the O2

cathode, a Li anode, and a polyvinylidene difluoride (PVDF) gel
electrolyte. In 2006, Bruce and co-workers [190] demonstrated
the reversibility of the discharge product, Li2O2, by combining an
organic electrolyte with MnO2 as a catalyst. Since then, Li–O2 bat-
teries have gained steep acceleration in terms of R&D effort and are
considered to be promising next-generation Li batteries. In general,
four types of electrolyte have been employed in Li–O2 batteries:
aprotic, aqueous, all-solid-state, and hybrid aqueous/aprotic elec-
trolytes. Among these, aprotic Li–O2 batteries attract the most
research effort because aqueous electrolytes have a low decompo-
sition voltage and solid electrolytes have insufficient ionic conduc-
tivity [71]. Thus, this section focuses on aprotic Li–O2 batteries. In
aprotic Li–O2 batteries, O2 is reduced to solid Li2O2 during the dis-
charge process via the reaction 2Li + O2 M Li2O2 (2.96 V vs. Li/Li+)
[191]. The charge process is not completely reversible due to the
difference between the oxygen reduction reaction (ORR) and the
oxygen evolution reaction (OER). The large overvoltage (�0.70 V)
between the charge and discharge plateau is direct evidence of this
partially reversible reaction. The theoretical energy density of non-
aqueous Li–O2 batteries is about 3500 W�h�kg�1 when the mass of
O2 is included [15]. The O2 cathode is mainly composed of a sub-
strate, catalysts, and binder. O2 is also present as an active mate-
rial. The substrate provides reaction sites, supports the catalysts,
and even catalyzes reversible oxygen electrochemical reactions
[192]. Carbon materials, such as black carbon [193], graphene
[194], and CNT [195] are the main choices as substrates. As has
been proposed by Bruce and co-workers [190], additional catalysts
are necessary for fast reaction kinetics. Metal oxides and metal,
such as gold (Au) [196], are common catalysts. Since O2 can readily
be acquired from the air, the cost of Li–O2 batteries is potentially
much lower than that of LIBs. Because Li–O2 batteries operate in
an open system, an additional selective membrane is necessary
to prevent the permeation of other gases, water, and impurities
from the air.

Despite their obvious advantage in energy density, Li–O2 batter-
ies carry both academically and technologically complex problems
(Fig. 10) [71]. These challenges mainly originate from the complex
chemistry of O2 cathode and high reactivity of Li anode.
� Poor rate capability. The diffusion and dissolution of O2, and the
inherent reaction kinetics are bottleneck. The discharge pro-
duct, Li2O2, is insoluble in liquid electrolyte and easily clogs
the substrate, which impedes the reaction process.

� High charge overvoltage. The ORR and OER, corresponding to
the discharge and charge processes, respectively, require cata-
lysts with very high bifunctional reactivity.

� Electrolyte and carbon decomposition. The intermediate pro-
duct, the oxygen radical O�2�, preferably reacts with the organic
electrolyte and even with the substrate via nucleophilic attack,
resulting in drastic decomposition.

� Li anode reactivity.
Consequently, Li–O2 batteries are still in their infancy, and their

development is more challenging than that of Li-ion and Li–S
batteries.

To deal with the aforementioned issues, tremendous projects
have been proposed in response to the challenges posed by the sub-
strate, catalysts, and electrolytes of Li–O2 batteries. Regarding elec-
trolytes, many studies have shown that electrolyte stability is a key
challenge for aprotic Li–O2 batteries [197]. Therefore, searching for
electrolytes that can remain stable in the O2-rich electrochemical
environment is the current priority. Carbonate electrolytes are
severely unstable due to the catalytic activities of the intermediate
discharge O-containing species. Ether electrolytes exhibit excellent
stability in the presence of the intermediate discharge O-containing
species; however, their electrochemical stability remains doubtful
over long-term cycling. Dimethyl sulfoxide (DMSO) and tetraethy-
lene glycol dimethyl ether (TEGDME) are common solvents in Li–O2

batteries at present. Aside from solvents, Li salts and additives
require more attention, as they also have a significant effect on
the stability of the electrolyte. LiPF6, LiNO3, LiClO4, LiCF3SO3,
LiN(SO2C2F5)2, and LiN(SO2CF3)2, among others, have been studied
for application in Li–O2 batteries [198–200]. The importance of
the anion has also been realized, which provides a new route to
enhance stability [201]. Additives are generally redox mediators
to reduce overvoltage thermodynamically in OER process and anion
receptor to increase the solubility of O2. Anion receptor additives
include strong Lewis acids or fluorinated compounds, such as tris
(pentafluorophenyl) borane (TPFPB) [202], methyl nonafluorobutyl
ether (MFE) [203]. Redox mediators, such as 2,5-di-tert-butyl-1,4-
benzoquinone (DBBQ) (Fig. 11(a)) [204] and tetrathiafulvalene
(TTF) [205], can reduce the overvoltage. Bruce and co-workers
[204] have employed DBBQ to promote the solution phase forma-
tion of Li2O2 in a low donor number electrolyte; and it was found



Fig. 11. (a) Schematics of the reaction mechanism of the discharge process and the effect of DBBQ on the potential determining step. (b) Schematic of an ordered hierarchical
mesoporous/macroporous carbon catalyst and its effect on O2/Li2O2 conversion. (c) Discharge/charge profiles of carbon and PtAu/C in the third cycle. ((a) Reproduced from
Ref. [204] with permission of Nature Publishing Group, � 2016; (b) reproduced from Ref. [213] with permission of Wiley, � 2015; (c) reproduced from Ref. [196] with
permission of American Chemical Society, � 2010)

Fig. 10. The challenges of Li–O2 batteries. (Reproduced from Ref. [71] with permission of Wiley, � 2016)
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to enhance the discharge performance and exhibit a new mecha-
nism. Other research on the use of ionic liquid and solid electrolyte
in Li–O2 batteries is also ongoing [206].

The substrate and catalysts in a Li–O2 battery are designed to
decrease the overvoltage, increase energy efficiency, enhance rate
performance, and improve self-stability. Carbon materials are the
main choice of substrate due to their high conductivity, large sur-
face, high pore volume, and low cost [207,208]. The defects in car-
bon materials have been found to catalyze the ORR process [209].
Porous carbon materials (e.g., Super P [210], Ketjenblack [211], and
Vulcan carbon [212]) have been employed as basic substrates.
Their performance can be further enhanced by the design of a
new structure, as porous carbon materials with a large pore vol-
ume and ordered channels can improve the performance of Li–O2

batteries. Xia, Wang, and co-workers [213] have demonstrated
the positive effects of ordered mesoporous channels in facilitating
the electron-transfer process and the diffusion of Li ions
(Fig. 11(b)). Macropores are surrounded by ordered mesoporous
channels in order to provide enough space for the formation/
decomposition of Li2O2 and for O2 diffusion.

Catalysts can enhance the reaction kinetics of the OER and/or
ORR process, although it remains doubtful whether they can
improve the overall performance of a battery. Metal oxides and
metals are commonly used catalysts in Li–O2 batteries. MnO2

shows good ORR activity, so Bruce and co-workers [214] have care-
fully investigated the effect of the crystal structure and morphol-
ogy of MnO2 in enhancing battery performance. Iridium oxide
and ruthenium oxide have also attracted great interest for their
excellent OER activity. Metals such as platinum, palladium, gold,
and hybrids have also been employed. As the main example of such
usage, Shao-Horn and co-workers [196] have utilized PtAu
nanoparticles to concurrently improve the kinetics of ORR and
OER in Li–O2 batteries (Fig. 11(c)). Use of the bifunctional PtAu cat-
alyst leads to high round-trip efficiency and decreased overvoltage.
Since then, the use of metal catalysts in Li–O2 batteries has
increased considerably.

At present, the Li–O2 battery is still in its initial stages, although
many strategies have been investigated to overcome its issues. The
cycle life and capacity of the Li–O2 batteries currently being
reported in many published papers are still far from being suitable
for practical application. In the long term, increasing the fundamen-
tal understanding of the chemical and electrochemical reaction
mechanisms in the cathode is the most important but most difficult
task. Although Li–O2 batteries have a longway to go before their use
in practical applications, there is still hope for their development.
4. Conclusions and perspectives

Innovations in battery chemistry have significantly promoted
and sustained the development of human society in terms of
energy utilization. Advances in energy chemical engineering are
what make innovation in battery chemistry possible, leading to
the commercialization of rechargeable batteries. LIBs are an excel-
lent example of the combination of battery chemistry innovation
with energy chemical engineering. At present, the generation of
renewable and clean energy is more conveniently and cheaply pro-
vided by the rapid development of solar energy and wind energy
harvesting technologies. However, the utilization of intermittent
sources of renewable energy must be combined with energy stor-
age solutions. If further breakthroughs in energy storage systems
can be achieved, they will promote sustainable development in
numerous fields, both in the present and in the future, including
the information industry, quality-of-life research, and the materi-
als industry. Therefore, next-generation Li batteries are highly
expected and under intensive research.
The battery chemistry, challenges, and recent advances in the
energy chemical engineering of Li-ion, Li–S, and Li–O2 batteries
were briefly summarized in this review, providing a backdrop for
the further development of next-generation Li batteries. Current
strategies cannot completely solve the challenges presented by
these batteries. More fundamental understanding and further
developments in energy chemical engineering are required in the
following areas:

(1) Ion-transport mechanisms. The current understanding of
solid–solid and solid–liquid interfaces is still complex and vague,
although some initial characterization tools andmethods have been
used to investigate the solvation/de-solvation of ions, interfacial
formation reactions, and the ion-transport mechanism amongmul-
tiple phases. Further in-depth investigations are required in order
to consider the effect of the electric field and the complexity of
the interface amongmultiple phases. Therefore, multiscale theories
and experiments are imperative and will provide new understand-
ing and guidance. For example, the utilization of density functional
theory, molecular dynamics, spherical aberration electron micro-
scopy, and synchrotron radiation will open up new avenues.

(2) A stable interface on Li metal. The Li anode is an indispens-
able part of a high-energy system. Understanding and regulating
the interface on the Li anode is a key step toward feasible utiliza-
tion of the Li anode. The introduction of a fluorinated interface
holds promise in protecting the Li anode. The question of how to
precisely regulate the components and structure of the SEI, which
is not limited to the fluorinated interphase, is the key for further
improving the coulombic efficiency of Li batteries. If a high
coulombic efficiency of 70%–95% can be realized with a high areal
current density (10 mA�cm�2) and high areal capacity
(> 6 mA�h�cm�2), the practical application of the Li anode will be
promising. Meanwhile, the introduction of a structured Li anode
is an effective method. Here, achieving precise and uniform Li
deposition in interconnected ionic and electronic channels is the
key goal.

(3) An intimate interface on the cathode. For a full battery, the
interface between the cathode and electrolyte is essential, but
lacks current attention. Here, the transport of and reactions
between ions and electrons are key issues. The question of how
to construct stable electronic channels in a three-dimensional mul-
tiphase system that can tolerate volume change and high current
density remains a challenge. The use of CNTs, graphene, and their
hybrids contributes significantly to the formation of conducting
networks. Regarding ion channels, resistance from the interface
between the solid or liquid electrolyte is a problem. LiNbO3 has
been employed to suppress the space charge layer on certain cath-
ode materials. To decrease interfacial resistance between the
anode and solid electrolyte, the formation of an SEI by the intro-
duction of film-formation agents to ensure good wettability is an
emerging research direction.

(4) Cooperation within full batteries. Efficient cooperation
among the anode, cathode, and electrolyte will greatly contribute
to the stable operation of full batteries. Volume change, reaction
heat, and the uniform distribution of ions and current densities
at different depths of discharge should be considered when the
match between an anode and a cathode is being designed. Chemi-
cal engineering may provide a more effective means of optimizing
the parameters of batteries.

(5) Battery safety. Thermal runaway easily occurs when batter-
ies are operated under uneven current density and short circuit. In
such a situation, the SEI decomposes and the separator melts and
shrinks, giving rise to further short circuit and increased tempera-
tures. The cathode electrode then decomposes and releases a great
deal of heat, leading to fire and even explosion. Initial material
designs, heat-stable SEIs and separators, and current density have
been explored in order to improve the safety of these batteries. In
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addition, a battery management system is essential for safe batter-
ies. Here, systems engineering within chemical engineering can
play a part.

(6) Battery application in smart electric vehicles. Further
optimization of batteries and materials in order to adapt the power
supply behavior and usage features is necessary for the widespread
commercialization of smart electric vehicles. The emerging self-
heating technology in batteries satisfies the demands of electric
vehicles by maintaining a constant temperature in the battery,
which is a new direction.

(7) The application of batteries in grid-scale energy storage
systems. There are many opportunities for rechargeable batteries
to be employed in grid-scale energy storage systems. However,
challenges also exist. Organic cathodes and sodium anodes, which
are backed by a great deal of available resources, are very attractive
for grid application, when the cost of energy storage is taken into
account.

(8) The popularization of next-generation Li batteries with
new chemistry. Innovations in business models, supply, and recy-
cling chains are required to promote the popularization of next-
generation Li batteries. A new business model would provide solid
support to improvements in next-generation Li batteries, such as
financial support, new instruments, and labor. It is also necessary
to establish a resource supply and a battery recycling industry.
Utilizing resources efficiently and recycling scrapped batteries
are necessary for the sustainable development of next-generation
Li batteries, and guidance from governments and market promo-
tion will play important roles in these efforts.

Great progress has been achieved in Li-ion, Li–S, and Li–O2 bat-
teries during the past two decades. However, as yet, there is no
ideal design that allows Li batteries to perform well under all con-
ditions. Increasingly advanced characterization tools, advanced
computer science, nanotechnology, and precision instruments pro-
vide new opportunities for the further development of batteries. In
addition, persistent investigations into relevant science and tech-
nology are ongoing. This is the right time for the development of
next-generation Li batteries in order to answer the challenges
being presented by the world. The issues hindering Li batteries
are being addressed with engineering, as discussed in this article.
Through persistent engineering efforts, next-generation Li batter-
ies will become the cornerstone of the future and will promote
the sustainable development of human civilization.
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