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Abstract
Lithium ion battery has achieved great success in portable electronics and
even recently electronic vehicles since its commercialization in 1990s. However,
lithium-ion batteries are confronted with several issues in terms of the sustain-
able development such as the high price of raw materials and electronic prod-
ucts, the emerging safety accidents, etc. The recent progresses are herein empha-
sized on lithiumbatteries for energy storage to clearly understand the sustainable
energy chemistry and emerging energy materials. The Perspective presents novel
lithium-ion batteries developed with the aims of enhancing the electrochemi-
cal performance and sustainability of energy storage systems. First, revolution-
ary material chemistries, including novel low-cobalt cathode, organic electrode,
and aqueous electrolyte, are discussed. Then, the characteristics of safety per-
formance are analyzed and strategies to enhance safety are subsequently eval-
uated. Battery recycling is considered as the key factor for a sustainable society
and related technologies are present as well. Finally, conclusion and outlook are
drawn to shed lights on the further development of sustainable lithium-ion bat-
teries.
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1 INTRODUCTION

High-energy density and long service life are the per-
manent pursuits for rechargeable batteries.1 Battery

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

technologies have made great progress from the recharge-
able lead–acid, nickel–cadmium, nickel–metal hydride
batteries to the distinguished lithium (Li)-ion batteries
(LIBs). Since the successful commercialization in 1991 by
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Sony Corporation, LIBs have revolutionized the market
of portable electronic devices and electric vehicles (EVs),
and exhibit great promise in large-scale stationary energy
storage systems, such as smart grids, which can efficiently
store and utilize renewable sources, for example, solar
and wind power.2,3 These applications of LIBs render a
possible fossil fuel-free, clear, and sustainable society.4–6
The award of the 2019 Nobel Prize in Chemistry was jointly
granted to John Goodenough, Stanley Whittingham, and
Akira Yoshino for their significant contributions to the
development of LIBs and the sustainable society.
Current commercial LIBs employ inorganic

transition-metal phosphate or oxide cathodes (such
as, LiFePO4 [LFP], LiCoO2 [LCO], LiMn2O4 [LMO],
LiNi0.8Co0.15Al0.05O2 [NCA], and LiNixMnyCozO2 [NMC,
x + y + z = 1]), nonaqueous or polymer electrolytes,
graphite or silicon-graphite-mixed anodes.7–9 With a
global sale penetration rate of 2.2% in 2018 according
to McKinsey’s Electric Vehicle Index (https://www.
mckinsey.com/industries/automotive-and-assembly/our-
insights/expanding-electric-vehicle-adoption-despite-early-
growing-pains), EVs currently still only account for a small
percentage of vehicle market. In the long term, if more
vehicles and portable electronic devices are shifted to
be powered by LIBs, the demand on LIBs will sharply
increase. This will lead to the vast consumption of these
components in LIBs, such as Li, Co, Ni, Cu, Al, etc.,
which are high-value metals.10 Especially, Co and Li are
critically rare and very expensive, whose contents in LIBs
are 5-15 and 2-7 wt.%, respectively.11,12 It is forecasted that
Li carbonate required by LIB industry will increase from
265 000 tons in 2015 to 498 000 tons in 2025, which can
result in a supply shortage in the near future.13,14 Addition-
ally, the cost of battery accounts for 35-40% of the EV price
according to Statista (https://www.statista.com/statistics/
797638/battery-share-of-large-electric-vehicle-cost/), lead-
ing to the high price of current EVs compared to that
of gasoline cars. These scenarios can generate harmful
consequence to the sustainable development of LIBs.
Advanced electrode design and battery recycling technolo-
gies are urgently demanded to handle these problems.15,16
It should be noted that the ultra-long life is the basic to
handle the sustainable dilemma of LIBs, which can reduce
the materials requirement and cost in the full-life cycle.
Higher energy density and more cycling times are helpful
to improve the lifespan of LIBs, which are the research
focus of current LIBs and has achieved great success.17–20
Another threat to the sustainable development of LIBs

is the safety issues of LIBs, which is the bottle neck
of the practical applications of batteries.21 Compared to
the fuel vehicles, EVs are still far from mature, and fire
accidents are reported occasionally.22 Compared to the
portable devices, the accidents of EVs can generate serious

consequence and even personal injury. Materials, cell, and
pack design are comprehensively required to guarantee the
safe operations of LIBs.23,24
In this Perspective, the recent progress in energy chem-

istry of sustainable LIBs isdiscussed (Figure 1). In Section 2,
a comprehensive overview of Co-related cathode chem-
istry during charging and discharging is given. Material
chemistries of organic electrodes and aqueous electrolytes
are presented in Sections 3 and 4. Characteristics of safety
performance for LIBs are introduced in Section 5. Bat-
tery recycling technologies are underscored in Section 6.
Finally, conclusion and outlook are drawn in Section 7.

2 LOW-COBALT CATHODE

LCO is one of the most important cathodes and was pre-
dominantly used in the batteries of electronic devices and
even EVs. However, relative to other transition metals, Co
is a less abundant mineral product (0.0023% in the earth
crust) and difficult to mine because Co is generally a by-
product of Cu/Ni mines. Additionally, political issues also
raise the mining difficulties because Co is mostly mined in
Africa with strong geopolitical instability. All these factors
lead to an increasing price of Co from US$ 26 500 per ton
in September 2016 to US$ 94 250 per ton in March 2018.25
Therefore, to obtain a sustainable development of LIBs,
Co content in the layered oxide cathode should be much
reduced, even to zero.26,27
Besides LCO, NCA and NMC are recently equipped in

the majority of LIBs for EVs. In terms of cost, Co should be
much reduced in the cathode. For example, the cost of LCO
batteries can be reduced about two times by these with
NCA and NCM811 cathodes, three times by these with the
Co-freeNi-rich layered cathode, and 20 times by thesewith
sulfur cathode, without considering the production cost.28
However, Co is still critically important for the cathode in
light of capacity release and cycling stability.29 Nickel is
intrinsically unstable due to its relatively strong magnetic
moment in the transitionmetal layer. When Li intercalates
the layer and replaces Ni3+, magnetic frustration can be
effectively alleviated, but the replacement can disorder the
cathode lattice and lead to the very rapid degradation of
cathode structure.When Co is introduced into the cathode
structure, it can not only relieve the magnetic frustration,
but also maintain the stable cathode structure because
Co3+ is nonmagnetic (Figure 2).30 Besides Co, Al can also
partly suppress the Li+/Ni2+ mixing to improve the elec-
trode stability, which presents possibility to strengthen the
structure stability with the replacement of Co.Mn does not
have the ability to suppress the Li+/Ni2+ mixing, while it
can increase the thermal stability and reduce the price of
the cathode.
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F IGURE 1 Researches for sustainable development of LIBs

F IGURE 2 Magnetic frustration of Ni, Li, and Co30

Extensive research efforts are conducted to reduce
or even eliminate the Co content in the cathode of
LIBs to lower battery cost while maintaining cycling
performance.

1. High-Ni NMC: The NMC chemistry includes several
forms, such as NMC111 (Figure 3A), NMC532/622, and
most recent NMC811. The high Ni and low Co can
lead to a high capacity and low price, meanwhile a
poor cycling stability andhigh safety hazard. Electrolyte
modification,31–33 interfacial design,34–36 postsynthesis
annealing,37 and morphology regulation,38 can effi-
ciently relieve these issues.

2. LFP: Reported firstly in 1997 by Goodenough et al.,
LFP has become an important electrode material (Fig-
ure 3B),39 which has excellent long-term cycling abil-
ity, thermal stability, environmental friendliness, and
low cost. Compared with LCO and NMC, the theoreti-
cal capacity of LFP is relatively low (170 mAh/g at room
temperature), which limits the practical application of

LFP, especially in EVs.40 By size reduction and carbon
coating41 to improve the rate performance42 and tech-
nology improvement in the pack design, such as cell to
pack (CTP) strategy by CATL Corporation and Blade
Battery strategy by BYD Corporation, the energy and
power density can be largely increased to satisfy the
demand of EVs.

3. Lithium- and manganese-rich cathodes: Lithium-
and manganese-rich layer-structured cathodes with
reduced Co content (such as Li1.2Ni0.15Co0.1Mn0.55O2,
Co content: 6.9 vs. 60.2 wt.% for LCO) can deliver
high reversible capacities of over 280 mAh/g, which is
nearly double of those of LCO and LFP cathodes.43,44
However, the high capacity is at the cost of severe
phase transitions and oxygen release, limiting the
cathode voltage caused by activating the lower-voltage
redox couples of Mn3+/Mn4+ and Co2+/Co3+ besides
the pristine Ni2+/Ni3+, Ni3+/Ni4+, and O2−/O− redox
couples.45,46 Surface coating and introducing foreign
elements can be efficient in inhibiting the voltage fade.
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F IGURE 3 Structure of several selected cathode materials. (A)
NMC111; (B) LFP; (C) Li2MnO3

O2-type Li-rich cathode of a single-layer Li2MnO3 is a
completely Co-free system and it can release an ultra-
high capacity of 400 mAh/g, which is induced by the
anionic oxygen redox processes (Figure 3C).47 Spinel
LiNi0.5Mn1.5O4 cathode is another promising Co-free
electrode with a high voltage of 4.7 V and, thus, an
ultrahigh energy density of 650Wh/kg, 162.5 and 131.3%
higher than those of LiMn2O4 and LFP, respectively.27
The problems of these similar cathode are the rapid
capacity decay and severe electrolyte decomposition,

which can be effectively handled by interfacial coating
and morphology regulation, etc.48–51 Additionally,
sulfur is also a Co-free cheap electrode material with
a high theoretical capacity of 1675 mAh/g, delivering a
high theoretical energy density of 2600 Wh/kg when
matching Li metal anode.52–55

Low-Co cathode is theoretically beneficial for the low
cost and sustainable development of LIBs. However, there
are still many technical problems such as the complicated
and costly production technology of these novel low-Co
cathodes and the difficulty in large scalability. Great inno-
vations in science and engineering are critically required
for the mass production of low-Co batteries.

3 ORGANIC ELECTRODE

Since the first commercialization of LIBs, cathodes of
LIBs are generally inorganic components, mainly pro-
duced from ores, rather than renewable resources.56–60 In
the long term, if all vehicles and electronic devices are
powered by LIBs, the cathode materials will suffer from
severe resource crisis.61,62 Therefore, renewable electrode
materials are compelled to develop for LIBs. Recently, a
new category of organic electrode materials has attracted
wide attention due to their potentially sustainable nature
and low carbon footprint, which can be facilely produced
from biomass.63–68 Actually, tricarbonyl compound was
employed as an organic electrode for LIBs as early as
the 1960s.61 Since that, various organic cathodes have
been developed such as polyacetylene, organosulfur com-
pounds, nitroxyl polyradical, etc.69–71
The organic electrodes can be generally categorified as

three types of p-, n-, and bipolar-type based on their redox
mechanisms (Figure 4).72,73 (1) p-type electrodes must
firstly lose electrons from their original neutral state form-
ing a positively charged state. (2) n-type electrodes must
accept electrons initially from their origin neutral state
forming a negative state. The electrochemical potential of
p-type electrode is higher than that of n-type electrode.
Therefore, p-type electrode is usually adopted as the cath-
ode, while n-type electrode can be either adopted as cath-
odes or anodes, decided by its practical redox potentials
and its counterparts. (3) Bipolar-type electrodes are able to
both lose and accept electrons from the neutral state, thus,
can be either charged or discharged initially. The category
method is decided by the redox center of organic cathodes
in the molecules.
Sustainability is the most significant feature for organic

cathode relative to the routine inorganic cathode materi-
als. However, as an electrode potential for practical appli-
cations, it must satisfy many other demands.74 (1) Energy
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F IGURE 4 Three typical mechanisms for the redox chemistry of organic electrodes

density: the organic electrodes normally cannot present
a wide voltage window (higher cathode voltage or lower
anode voltage), while they can release a high capacity by
overlithiation, such as 720 mAh/g for dimethyl trisulfide75
and 902 mAh/g for cyclohexanehexone76 as the cath-
ode, 2000 mAh/g for 1,4,5,8-naphthalenetetracarboxylic
dianhydride as the anode.77 An energy density of 500-
750 Wh/kg on the material level can be obtained.78–82 (2)
Power density: it is adopted to indicate the ability of fast
charge and discharge. There exists a balance between the
energy and power density. A high power density usually
corresponds to a low energy density. Because of the fast
kinetics and porous structure of organic electrodes, they
are potential to have a high power density. (3) Cycling sta-
bility: compared to the above two features, this feature of
organic electrodes is not good due to the dissolution of
organic electrode into the electrolyte, phase transforma-
tion, and side reactions. Fortunately, polymer cathode and
high-polarity organic salt, etc. are proposed to enhance the
cycling lifespan to 1000 cycles with more than 85% of their
initial capacity.83–87
The current researches of organic electrodes are gen-

erally conducted at the material level with a low mass
loading and ratio of active materials. More experiments
are required to be conducted at practical conditions, such
as high areal loading (mAh/cm), low electrolyte amount,
low negative/positive ratio, etc. Besides, the detailed redox
mechanisms of many organic electrodes are still not
clear, which requires further comprehensive investiga-
tions. Therefore, before the practical applications, more
researches and co-operations from the scientific and engi-
neering communities on organic electrode materials are
still demanded.

4 AQUEOUS BATTERY

Nonaqueous electrolyte is generally adopted in the com-
mercial LIBs due to their wide electrochemical window
and relatively high stability against electrode materials.
However, the nonaqueous electrolytes also have several
defects such as high price leading to the increase in the
battery cost and high flammability resulting in safety haz-
ards. Aqueous electrolyte can perfectly handle these two

F IGURE 5 (A) HER and OER issues of aqueous electrolyte
result in a low voltage; (B) solvation structure of salt-in-water and
water-in-salt electrolytes95

problems of nonaqueous electrolyte due to its intrinsically
safe and easily available nature.88–90 Additionally, aqueous
electrolyte also has the features of environmental benignity
(nonvolatility and nontoxicity) and capability of fast charg-
ing and, thus, high power density based on the potentially
high ionic conductivity of aqueous electrolyte.91–93
Except for the obvious advantages, the practical applica-

tions of aqueous electrolyte are limited by its theoretically
narrow electrochemical window of 1.23 V (Figure 5A),94
resulting in a low voltage and insufficient energy density
of practical batteries. The risk of oxygen evolution reaction
(OER) occurs at the cathode part and hydrogen evolution
reaction (HER) at the anode part, resulting in electrolyte
consumption, side reactions, and severe capacity decay.
To realize the practical applications of aqueous elec-

trolyte, the most urgent issue is to widen its working
voltage and improve the battery energy density. Some
progress has been achieved: (1) Water-in-salt electrolyte:
due to the coexistence of its oxygen site (Lewis basic-
ity) and hydrogen site (Lewis acidity), water has a
strong capability to dissolve most of Li salts with a high
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concentration. Suo et al. successfully dissolved 20 mol
lithium bis(trifluoromethanesulfonyl)imide in 1 kg water
and obtained highly concentrated aqueous electrolyte
(Figure 5B).95 In the water-in-salt electrolytes, the direct
contact of water electrolyte and electrode materials can
be potentially prevented due to the unique solvation
structure and the absence of free water molecules.96
Therefore, the oxidation and reduction of water molecules
on the electrode surface can be potentially avoided and
a stable potential window is substantially extended.97–99
(2) Hydrate melt electrolytes: similar to the water-in-salt
electrolyte, this electrolyte is to obtain a eutectic molten
salt in the presence of aqueous electrolyte and efficiently
trap water to the ions, maintaining the system with the
absence of free water.100 (3) Interface regulation: similar to
the nonaqueous electrolyte, interfacial films are observed
as well in the aqueous electrolyte, which can prevent
the contact of electrolyte and electrode to widen the
electrochemical stable window. Tris(trimethylsilyl) borate
additive was demonstrated to form a stable solid elec-
trolyte interface (SEI) on the cathode surface, which can
stabilize water molecules at a wide voltage window.101 By
rational designs on the electrolyte and electrode structure,
a high voltage is potentially achieved for a practical battery
and then a revolution can be realized for LIBs.

5 BATTERY SAFETY

The safety performance of power batteries is generally
characterized by thermal runaway behaviors, a phe-
nomenon that is induced by exothermic reactions in
the cells, largely increasing the cell temperature and
potentially resulting in fire and even explosion.102,103 As
an energy carrier, there are no absolutely safe batteries
and high energy density usually means high potential
security risks.104–106 Take Tesla Model S as an example,
its failure rate is about 1 in 10 000, while 7.6 fire accidents
in 10 000 vehicles occur in USA.107,108 Therefore, the self-
induced thermal runaway failure of EVs exists based on
the probability, but is not higher than that of fuel vehicles.
However, due to the highly focused attentions on EVs, the
accidents of EVs are much easier to be concerned by the
customers. Therefore, the challenged safety performances
in particular for the high-energy-density energy storage
systems have to be further improved.
Battery temperature abnormally rises under the

mechanical, electrical, or thermal abuse conditions,
causing the chemical reactions continuously. This results
in chain reactions, and leads to thermal runaway.109
During the entire process of temperature rise in a typical
NMC/graphite battery with polyethylene membrane,
the decomposition of SEI (80-120◦C),110 reaction between

anode and electrolyte,melting of polyethylene, decomposi-
tion of NMC and electrolyte, etc., are initiated sequentially
(Figure 6A).107,111 Usually, thermal runaway temperature
is defined as where the heat generation rate exceeds 1◦C/s.
Membrane melting-induced short circuit is the most fre-
quent reason for thermal runaway,112 while the reactions
between plated Li and the electrolyte, the released oxygen
from the cathode and the anode are also the reasons under
some abuse conditions, such as high rate, overcharge, and
overdischarge, etc. (Figure 6B). Even in some systems with
solid-state electrolyte (SSE), the side reactions between
Li metal and SSE can generate a great deal of heat and
result in thermal runaway.113 By comparing the thermal
runaway temperatures, heat generation rates, and total
generated heat of different SSEs, the thermal stability of
four SSEs matching Li was identified with the order of
Li1.5Al0.5Ge1.5(PO4)3 < Li1.4Al0.4Ti1.6(PO4)3 < Li3xLa2/3-x
TiO3 < Li6.4La3Zr1.4Ta0.6O12. The generated oxygen from
SSEs at the increased temperatures is considered to
account for the thermal runaway of SSEs matching Li
metal anodes.
Methods in materials and pack scale, and safety detec-

tions are required to reduce the hazard caused by ther-
mal runaway (Figure 6C).114 (1) Batterymaterialsmodifica-
tions: surface coating of the cathode115–118 and anode,119–121
stable electrolyte system,122–124 and stiff separator125–128
are designed to enhance the intrinsic safety of batter-
ies. (2) Pack design: the battery pack must be mechani-
cally strong to bear unanticipated mechanical destruction.
Some unique electronics, such as fuse, thermistor, etc.,
are beneficial to diminish the continuous damage of the
external short circuit, overcharge, overdischarge, etc. (3)
Safety detection: each battery pack must be equipped with
a battery management system (BMS) to detect the state
of batteries, such as state of charge (SOC), state of energy
(SOE), state of health (SOH), cell inconsistency, etc., which
are accurately estimated online. When BMS detects the
potential safe hazards, early warning must be provided to
avoid the secondary hazard. As indicated by Ouyang and
coworkers, the evacuation time required for a light vehi-
cle must be larger than 30 s and 5 min for a 12 m-length
bus to guarantee the passenger safety during the thermal
runaway accident.107 An enhanced safety performance is
promising to achieve through the multiscale strategies.

6 BATTERY RECYCLING

According to EV Sales Blog, the sales of EVs exceeded
2.2 million worldwide in 2019. If the average weight and
volume of battery pack are conservatively assumed to
250 kg and 0.5 cubic meter, the resultant pack wastes can
be around 550 000 tons and 1.1 million cubic meter after
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F IGURE 6 (A) Temperature-time curves during thermal runaway.107 (B) Thermal runaway sources for LIBs. (C)Methods to avoid thermal
runaway

the scrappage of these vehicles.129 Additionally, spent LIBs
are classified as hazardous wastes, which will pollute the
environment and harm the animals and humans. There-
fore, recovery of the components of cycled LIBs is valuable
from an economical view and critically significant from
the perspective of a sustainable development.130 It is crit-
ically pressing to develop battery recycling technologies in
terms of environment and economic considerations.
In the waste management hierarchy, there are two

levels of recycling options: reuse and recycling. “Reuse”
means that power batteries of EVs can have a second
life in the low-grade scenarios, while “recycling” means
that battery materials should be recovered as much as
possible with preserving high quality. Therefore, the spent
batteries must be carefully assessed. The detailed recy-
cling processes are very complicated (Figure 7).129 Three
technology routes are usually employed. (1) Pyromet-
allurgical recovery: pyrometallurgical methods adopt
a high-temperature furnace to reduce the metal oxide
components to an alloy of Co, Cu, Fe, and Ni, etc.
Preferential recovery of Co, Li2CO3, and graphite
from LCO/graphite battery,131 Li2CO3 from spent

LCO/LMO/NMC,132 Li2CO3 and Mn3O4 from
LMO/graphite battery133 has been successfully real-
ized by this method. (2) Hydrometallurgical recovery:
hydrometallurgical methods adopt aqueous solutions to
retain the desired metals from cathodes and the most
frequently adopted aqueous electrolyte is H2SO4/H2O2
system.134,135 This method can be facilely conducted at
room temperature, while may generate large quantities of
waste water and require associated additional costs. Based
on this strategy, Mn separation from others,136 Co of high
purity,137 Li and Co separation with high efficiency138,139
can be achieved. (3) Biological recovery: this is an
emerging method for LIB materials recovery and can be
potentially supplementary to the other two methods for
metal recovery. For example, Co andNi are very difficult to
separate by the pyrometallurgical and hydrometallurgical
methods, while specific microorganisms can digest the
metal oxides selectively from the cycled cathodes and
reduce them to generate Co and Ni particles.140
There are several key challenges for the current LIB recy-

cling technologies. (1) Technical aspects: the disassembly
of large capacity power batteries has lots of difficulties due
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F IGURE 7 The typical routes for battery recycling129

to the variations in the cell structure and chemistry. Com-
plicated multiple operations are usually required with a
well-established automatic processing line. The disassem-
bly process also has great potential hazards induced by
short circuit. (2) Economic aspects: based on cost-benefit
calculations, the current recycling technologies are gen-
erally conducted on the cell components with high price,
such as Li, Co, and Ni,10 while some less expensive com-
ponents are not much considered. Advanced recycling
technologies with economic feasibility at least cost-neutral
are urgently required to recover other battery compo-
nents, which is required by a sustainable development. (3)
Environmental aspects: the recycling technology involves

high temperature or large quantities of water treatments.
It must be noted that the recycling process must not gen-
erate additional pollutions to the environment. Therefore,
based on the great prospects of battery energy storage sys-
tems and the immaturity on the battery recycling technol-
ogy, there is plenty of opportunities in this field.

7 CONCLUSIONS AND OUTLOOK

Energy production is the permanent motivation to the
society development, while energy storage systems, espe-
cially LIBs, canmake the energy utilization more efficient.
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Sustainable development of LIBs has become a worldwide
objective and receivedmore attention than ever before due
to the vast production and extensive applications of LIBs.
Sustainability should be regarded as an additional dimen-
sion besides morphology, composition, and structure
when designing next-generation batteries. In the Perspec-
tive, the significance of sustainable development of LIBs
is emphasized, and the energy chemistry of sustainability
is discussed including low Co content, organic electrode,
and aqueous battery, battery safety, and battery recycling.
By clearly analyzing these aspects, novel materials and
energy chemistry, advanced technologies are required to
realize the sustainable development of LIBs.
The combination of high electrochemical performance

and sustainability has become crucial for the further devel-
opment of advanced LIBs. Much efforts have been made
during previous researches in designing novel electrodes,
electrolytes, and separators to achieve batteries with high
performance in energy density, power density, lifespan,
safety, and low cost. Further remarkable breakthroughs
in battery sustainability in theory and application are
required and several aspects can be considered in the
future researches on sustainable LIBs.
Sustainability of LIBs involves the full-life cycle, and is

a set of raw materials, synthesis of battery components,
battery assembly, use, and recycling. The cases discussed
in the Perspective are just some pivotal issues during
the practical applications of LIBs. Clearly analyzing the
full-life-cycle feature, developing novel energy chemistry,
and realizing the efficient recovery of spent battery mate-
rials of LIBs are of vital importance for the sustainable
LIBs, which are beneficial to build a harmonious and
sustainable society.
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