Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2014.

Supporting Information

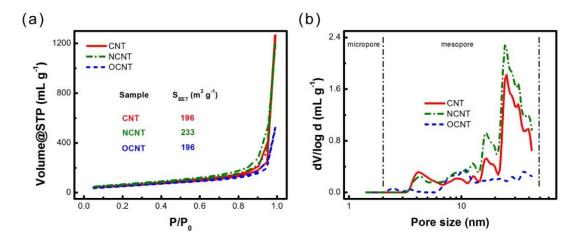
for Adv. Mater. Interfaces, DOI: 10.1002/admi.201400227

Strongly Coupled Interfaces between a Heterogeneous Carbon Host and a Sulfur-Containing Guest for Highly Stable Lithium-Sulfur Batteries: Mechanistic Insight into Capacity Degradation

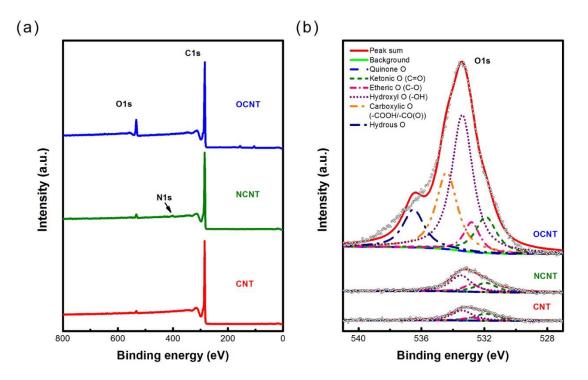
Hong-Jie Peng, Ting-Zheng Hou, Qiang Zhang, * Jia-Qi Huang, Xin-Bing Cheng, Meng-Qing Guo, Zhe Yuan, Lian-Yuan He, and Fei Wei

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2014.

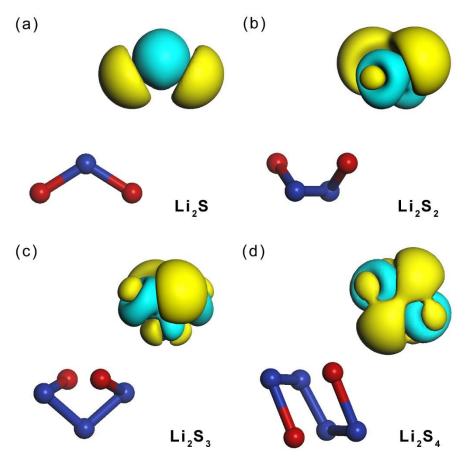
Supporting Information for

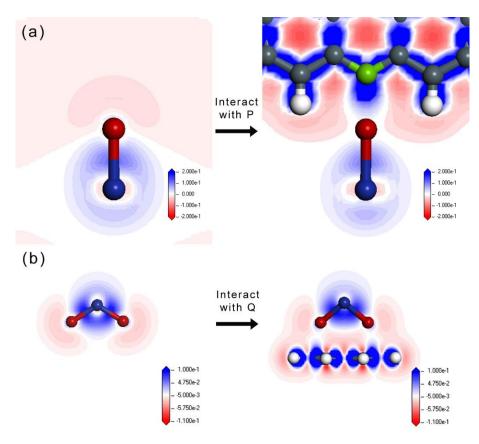

Strongly Coupled Interfaces between Heterogeneous Carbon Host and

Sulfur-Containing Guest for Highly-Stable Lithium-Sulfur Batteries:


Mechanistic Insight into Capacity Degradation

Hong-Jie Peng, Ting-Zheng Hou, Qiang Zhang, * Jia-Qi Huang, Xin-Bing Cheng, Meng-Qing Guo, Zhe Yuan, Lian-Yuan He, Fei Wei


H. J. Peng, T. Z. Hou, Prof. Q. Zhang, Dr. J. Q. Huang, X. B. Cheng, M. Q. Guo, Z. Yuan, L.
Y. He, Prof. F. Wei
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology
Department of Chemical Engineering
Tsinghua University
Beijing 100084, PR China
E-mail: zhang-qiang@mails.tsinghua.edu.cn (Q. Zhang)


Figure S1. (a) N_2 sorption isotherm, BET specific surface area, and (b) pore size distribution based on QSDFT model of CNTs, NCNTs, and OCNTs.

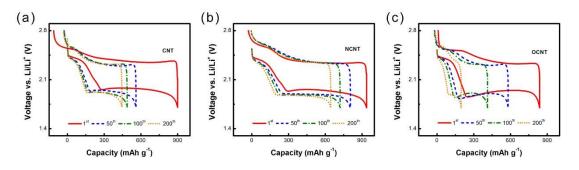

Figure S2. The XPS spectra of (a) survey scans and (b) O1s region of CNTs, NCNTs, and OCNTs.

Figure S3. First-principle calculation of polar (a) Li_2S , (b) Li_2S_2 , (c) Li_2S_3 , and (d) Li_2S_4 , showing the optimized molecular configuration and corresponding deformation charge density. In molecular configuration, the lithium and sulfur atoms are denoted as spheres in red and blue respectively; while in distribution of deformation charge density, donation/acceptance of electron is denoted as light yellow/cyan respectively.

Figure S4. First-principle calculation of deformation charge distribution at the Li_2S adsorption sites of molecule (a) P (top view) and (b) Q (front view), in which the lithium and sulfur atoms are denoted as spheres in red and blue respectively; while increase/decrease of local electron density is denoted as blue/red respectively.

Figure S5. Galvanostatic charge-discharge curves of (a) CNT, (b) NCNT, and (c) OCNT based composite cathode during cycling at current density of 1.0 C.

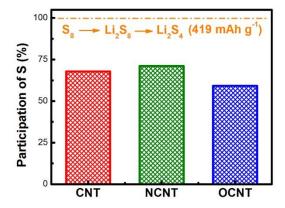
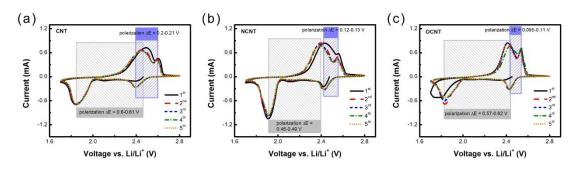



Figure S6. Initial participation of S in CNT, NCNT, and OCNT based composite cathode.

Figure S7. CV profiles of (a) CNT, (b) NCNT, and (c) OCNT based composite cathode at scan rate of 0.1 mV s^{-1} .

Table S1. Summary of nitrogen species in NCNTs.

		Relative amounts of nitrogen species (at %)					
Sample	Total content of	Pyridinic	Pyrrolic	Quaternary	Oxidized	Chemisorbed	
	nitrogen (at %)	nitrogen	nitrogen (400.1	nitrogen	nitrogen	nitrogen	
		(398.4 eV)	eV)	(401.2 eV)	(402.9 eV)	(404.8 eV)	
NCNT	1.76	23.8	2.4	35.3	3.3	35.2	

	Relative amounts of oxygen species (at %)						
Total content	Quinona	Ketonic	Etheric	Hudrovulic	Carbovulia	Hydrous	
of oxygen		oxygen	oxygen		•	oxygen	
(at %)		(531.9	(532.8			(536.5 eV)	
	(330.4 6 V)	eV)	eV)	(333.4 6 V)	(554.4 6 V)	(330.5 € V)	
1.40	1.3	34.5	11.6	49.3	2.1	1.2	
2.09	3.7	27.7	17.4	48.4	2.8	0.0	
8.88	0.0	11.8	7.2	43.9	24.8	12.3	
	of oxygen (at %) 1.40 2.09	of oxygen (at %) Quinone oxygen (530.4 eV) 1.40 1.3 2.09 3.7	Total content of oxygen Ketonic Quinone oxygen oxygen (at %) (530.4 eV) 1.40 1.3 34.5 2.09 3.7 27.7	Total content of oxygenKetonicEthericQuinone oxygenoxygen oxygenoxygen(at %) (530.4 eV) (531.9) (532.8) (530.4 eV) eV eV 1.401.334.511.62.093.727.717.4	Total content of oxygen (at %) Ketonic Etheric oxygen Hydroxylic oxygen (at %) 0xygen (530.4 eV) 0xygen (531.9 0xygen (532.8 oxygen (533.4 eV) 1.40 1.3 34.5 11.6 49.3 2.09 3.7 27.7 17.4 48.4	Total content of oxygen (at %)KetonicEtheric oxygen (530.4 eV)Hydroxylic oxygen (531.9Carboxylic oxygen (532.8 (533.4 eV)1.401.334.511.649.32.12.093.727.717.448.42.8	

Table S2. Summary of oxygen species in CNTs, NCNTs, and OCNTs.

	00		= / 1	1				
		Binding energy (eV)						
		Р	Q	С				
	S	-2.74	-3.13	-2.71				
	Li ₂ S	-1.42	-1.12	-1.02				
I	Li_2S_2	-1.24	-1.01	-0.86				
I	Li_2S_3	-1.13	-0.75	-0.62				
I	Li_2S_4	-1.04	-0.73	-0.55				

Table S3. Summary of binding energy between carbon surfaces (P, Q, and C) and S-containing guests (S, Li_2S_4 , Li_2S_3 , Li_2S_2 , and Li_2S) based on first-principle calculation.