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Abstract: Developing rechargeable batteries that oper-
ate within a wide temperature range and possess high
safety has become necessary with increasing demands.
Rapid and accurate assessment of the melting points
(MPs), boiling points (BPs), and flash points (FPs) of
electrolyte molecules is essential for expediting battery
development. Herein, we introduce Knowledge-based
electrolyte Property prediction Integration (KPI), a
knowledge—data dual-driven framework for molecular
property prediction of electrolytes. Initially, the KPI
collects molecular structures and properties, and then
automatically organizes them into structured datasets.
Subsequently, interpretable machine learning further
explores the structure—property relationships of mole-
cules from a microscopic perspective. Finally, by embed-
ding the discovered knowledge into property prediction
models, the KPI achieved very low mean absolute errors
of 10.4, 4.6, and 4.8 K for MP, BP, and FP predictions,
respectively. The KPI reached state-of-the-art results in
18 out of 20 datasets. Utilizing molecular neighbor
search and high-throughput screening, 15 and 14 promis-
ing molecules, with and without Chemical Abstracts
Service Registry Number, respectively, were predicted
for wide-temperature-range and high-safety batteries.
The KPI not only accurately predicts molecular proper-
ties and deepens the understanding of structure—prop-
erty relationships but also serves as an efficient frame-
work for integrating artificial intelligence and domain
knowledge.

: J

Introduction

Rechargeable batteries such as lithium-ion batteries have
been playing an increasingly important role in human daily
life, including powering electric vehicles and portable
electronic devices.!'! In addition to the need for high energy
density, there are growing demands for extending the
working temperatures of batteries due to harsh cold, desert
regions, and specialized applications such as spacecraft,
underground exploration, and sterilization of medical
equipment.””) At high temperatures, the side reactions
intensify, leading to rapid depletion of electrolytes and
active materials, and potentially triggering thermal runaway
in batteries.! On the contrary, the reaction kinetics
decreases dramatically at low temperatures, which can cause
the formation of lithium dendrites on graphite anodes and
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further induce safety hazards.” Therefore, developing wide-
temperature-range batteries significantly heightened safety
considerations.

The working temperature range and the safety perform-
ance of batteries are highly dependent on the physicochem-
ical properties of the electrolytes.”®! For example, Wang
et al.”! regarded a low melting point (MP) but a moderate
boiling point (BP) as the primary criterion for designing
electrolytes of lithium batteries. The authors reasonably
designed 4.5V LiNiygMn,;Co,;0,| | graphite full cells with
an areal capacity of 2.5mAhcm™, which can effectively
operate over a wide temperature range from —60 to 60°C.
Yamada et al.'"” developed a fire-extinguishing concentrated
LiN(SO,F),/trimethyl phosphate (TMP) electrolyte by thor-
oughly considering its BP and flash point (FP). This electro-
lyte enabled the graphite anode to survive 1,000 cycles at a
C/5 rate. However, previous electrolyte innovations have
been mainly based on an experimental trial-and-error
approach because of limited experimental data on electro-
lyte physicochemical properties."!! This time-consuming
approach faces grand challenges when seeking wide-temper-
ature-range and safe electrolytes that simultaneously require
alow MP, a high BP, and a high FP.

With the rapid development of high-performance com-
puting and data-driven technologies, theoretical prediction
and high-throughput screening have become favorable
approaches to accelerate electrolyte design.?! Many meth-
ods have been developed to predict the MP, BP, and FP of
electrolytes. For instance, early estimations of these molec-
ular properties employed specific mathematical functions
with several fitted physical parameters, but these methods
typically required the introduction of additional properties
and simplifying assumptions for computations, resulting in
low applicability."® To broaden the generalizability of
property predictions, the group contribution (GC) method
assumes that the contribution of individual functional groups
is consistent across molecules, allowing for rapid acquisition
of molecular properties through linear summation.' How-
ever, the accuracy of the GC method is often very limited
due to the lack of considering the interaction between
different groups.!'”! With the rise of computational chemistry
and materials methods, many electrolyte properties such as
viscosity and dielectric constant can be accurately predicted
by molecular dynamics simulations and statistical
methods."”! Simulating phase transitions typically requires
prolonged simulations and significant computational
resources.” The difficulty in accurately capturing equili-
brium states affects the prediction accuracy. Furthermore,
for MPs, simulating the temperature at which lattice
decomposition occurs is important, but obtaining the crystal
structure poses challenges.® Even for FP, it is necessary to
simulate the temperature at which the substance evaporates
and forms a flammable mixture with air, which involves
great complexity. With the rapid development of machine
learning, the quantitative structure—property relationship
(QSPR) method has rapidly evolved and achieved success in
drug design." However, this method is still largely depend-
ent on the precise and manual construction of molecular
descriptors.”! Consequently, previous methods for predict-
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ing molecular properties have poor generalizability, are
restricted to certain systems or single properties, and require
substantial manual intervention. For the rapid and precise
acquisition of MPs, BPs, and FPs, novel methods are
urgently required to achieve generalized and automated
property prediction.

Herein, we developed a Knowledge-based electrolyte
Property prediction Integration (KPI) framework for a
universal, automated, and interpretable prediction of elec-
trolyte molecular properties, including MPs, BPs, and FPs.
The framework is capable of automatically gathering data
from public datasets, followed by data filtering, analysis, and
visual representation. Moreover, it utilizes interpretable
machine learning to extract chemical knowledge from the
data, thereby enhancing the understanding of molecular
properties. To further refine the prediction accuracy of the
model, knowledge at different levels, i.e., atoms, bonds, and
molecules, is embedded into the model under the precise set
of the controller. Compared with predictions based on only
feature descriptors, the KPI framework demonstrated a
significant improvement in prediction accuracy, reducing the
mean absolute error (MAE) by 51.9 %, 68.2 %, and 55.5%
for MP, BP, and FP predictions, respectively. When
compared with unmodified deep learning models, the
reductions were 6.7 %, 14.7 %, and 17.8 % for MP, BP, and
FP predictions, respectively. Impressively, the KPI frame-
work surpasses state-of-the-art (SOTA) results in 18 out of
20 baseline datasets. The KPI framework demonstrated
excellent talents in designing promising electrolyte mole-
cules for wide-temperature-range and high-safety batteries.
Fifteen and fourteen molecules, with and without Chemical
Abstracts Service Registry Number (CAS ID), respectively,
were predicted through molecular neighbor search and high-
throughput screening.

Results and Discussion
Overview of the KPl Framework

The KPI framework mainly consists of three modules
(Figure 1): (a) data organization and statistical analysis, (b)
interpretability and knowledge discovery, and (c) knowl-
edge-based molecular property prediction. The framework
emphasizes the crucial role of knowledge across its entire
process. The knowledge discovery and knowledge embed-
ding are organically integrated to form a closed loop, which
ensures a high prediction accuracy of MPs, BPs, and FPs.
Each module of the KPI framework is introduced in detail
as follows.

The data organization and statistical analysis module can
extract molecular structures and corresponding properties
from public databases and reported papers (Figure 1a).
After filtering by implicit prior knowledge, the data is
automatically organized into structured tables. Then, the
module analyzes the descriptive statistics of the collected
molecules and visualizes the dataset to represent the
chemical space. Herein, the MPs, BPs, and FPs of electrolyte
molecules are especially focused on, but the module can
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handle other molecule discovery tasks according to their
specific scenario requirements.

The interpretability and knowledge discovery module
further transforms structured molecular data into feature-
based molecular information and employs the Shapley
additive explanations (SHAP) algorithm for knowledge
discovery (Figure 1b). The knowledge generated from the
data-driven approach correlates molecular structure and
properties, affording crucial references for designing new
electrolyte molecules. Furthermore, the knowledge acquired
by this module is fed into the next module as a prior for the
deep learning models.

The knowledge-based molecular property prediction
module integrates molecular structure with knowledge,
leveraging deep learning models for predicting molecular
properties (Figure 1c). The model takes a large amount of
molecular structure data as input, and the acquired knowl-
edge is embedded as atomic, bonding, and molecular
representations according to different purity levels and flow
rates. This approach fully considers the interaction between
molecular structure information and chemical knowledge,
enabling the model to acquire additional knowledge based
on data-driven model training.

Data Organization and Statistical Analysis

The KPI framework utilizes the application programming
interfaces (APIs) to automatically gather and format data
from reported papers and public databases into binary data
sets of molecular structures and corresponding properties
(Figure 2a). The molecular structures are represented using
simplified molecular input line entry system (SMILES), and
the properties include MPs, BPs, and FPs. Considering the
molecular property distribution of routine electrolytes
(Supplementary Figure S1), KPI restricts the molecular
weight (Molwt) within a range from 0 to 600 and the number
of heavy atoms (#Heavy) from 0 to 30. Besides, molecular
elements are restricted to hydrogen, carbon, nitrogen, oxy-
gen, fluorine, silicon (Si), phosphorus (P), sulfur, chlorine,
bromine, and iodine. Ultimately, the acquired database
consists of 4,235 molecules for MPs, 4,153 for BPs, and 3,504
for FPs, with property ranges of 85.4-633.2, 182.5-692.2, and
190.1-538.5 K, respectively (Figure 2b).

The distribution of these properties generally follows a
normal distribution, which reflects the adequacy of the
sample size and the completeness of data collection as per
the central limit theorem and is advantageous for statistical
inference in modeling prediction. The distributions of Molwt
and #Heavy are concentrated at small values, aligning well
with the characteristics of molecules widely used in electro-
lytes. Since both MPs and BPs are inherently affected by
intermolecular forces, there is a certain correlation between
them (Spearman’s rank correlation coefficient pg,caman=
0.81, Supplementary Figure S2). Furthermore, the trend in
FPs generally aligns with that of BPs (pspearman="0.97,
Supplementary Figure S3), because BPs are related to the
evaporation tendency, therefore directly influencing FPs.

© 2024 Wiley-VCH GmbH

95U8017 SUOWULWOD) BAIE81D) 3l jdde ay) Aq pauienob ale sapie VO ‘8sn J0 Sajni Joj Akeiq1 auljuo A3[IAN UO (SUONIPUOD-pUR-SWLB)/LI0D" A8 1M Alelq1jpul|uo//sdny) SUonIpuoD pue suis 1 auy) 88s *[520z/0T/Tz] uo Akigiauljuo Ao ‘Areiqi] Aisiealunenybuss ] Aq 9059202 ©1Ue/Z00T 0T/I0p/L0d A8 |Im Akelqjpuluo//sdny wolj papeojumod ‘v ‘G202 ‘€LLETZST



GDvCh Research Article Angeandte .
(a)

i @

Screening  Statistics  Visualization Features

S
g Molecular formula CH;OCH,CH,OCH;

Book Melting point=95 K

I? SMILES O=C10CC(F)0 . z ‘IL

PubChem CID 12021

Boiling point 85K =
Article )
3-Dimethoxyprof XXX XX XX X
- CAS 96-49-1
E Flash point 143K Origin sheet Organised sheet
Database \ﬂ, l!/
(c) (b)
Q "“."'
Ql
.g{ =
Nk s ¢ .|>_
R # —+
. Molecules Knowledge
Properties ﬂ, l|,
+ Melting point
« Boiling point el T T 0 ] Atoms 1]
+ Flash point e o |
\ Pairs
- -

Embedded molecules Vectorized knowledge

J

Figure 1. Overview of the Knowledge-based electrolyte Property prediction Integration (KPI) framework. (a) The data organization and statistical
analysis module. For molecular properties of interest to researchers, such as melting points (MPs), boiling points (BPs), and flash points (FPs),
the module can quickly retrieve data from databases via application programming interfaces (APIs) or collect it from papers or books. The model
then cleanses this data and conducts statistical analysis to initially acquire macroscopic knowledge. Subsequently, the model performs cluster
analysis and molecular neighbor searches, obtaining a visual representation of the molecular database and delineating the chemical space of
molecules of interest. (b) The interpretability and knowledge discovery module. The module automatically extracts molecular descriptors from the
simplified molecular input line entry system (SMILES) to obtain feature vectors. Utilizing the Shapley additive explanations (SHAP) for
interpretable analysis, the module explores the impact of features on specified properties, ranks the importance of features, and identifies their
relationships, thereby analyzing the factors influencing molecular properties from a microscopic perspective. (c) The knowledge-based molecular
property prediction module. The module embeds molecular structures along with the knowledge acquired from the previous module into a deep
learning model, adjusting the purity and flow of the embedded knowledge via a knowledge controller to optimize the model. Based on the trained

Knowledge
controller }'._ N I

model, it then provides feedback on the properties of molecules of interest to the researchers.

To further visualize the distribution of the molecules, the
KPI framework encodes molecules using the molecular
access system (MACCS) and employs the t-distributed
stochastic neighbor embedding (t-SNE) clustering method,
colored according to corresponding properties (Figure 2c).
The clustering diagram exhibits distinct regions, suggesting
the ability to identify potential electrolyte molecules under
specific property zones. Molecules with excellent low-
temperature performance, such as 1,3-dioxolane (DOL)?!
and ethyl acetate (EA),” high-temperature performance
like fluobenzene™! and dimethyl 2,5-dioxahexanedioate
as well as safety-oriented compounds like TMP!"! and N N-
dimethylacetamide™’ can be identified using the clustering
maps (Supporting Information Table S1). Since molecular
fingerprints encapsulate structural information, clustering
analysis holds promise for rapidly delineating feasible
molecular spaces through targeting molecules.
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Furthermore, the KPI conducted preliminary macro-
scopic statistical analyses on the data categorized into
hydrocarbons (HC), oxygen-containing (OC), and other
heteroatom-containing (OHC) molecules to explore the
impact of functional groups on molecular properties (Sup-
plementary Figure S4-S6 and Supporting Information Ta-
ble S2). HC have an average MP of 224.3 K, which is around
100 K lower than those of molecules in the other two
categories (339.2 and 3324 K for OC and OHC, respec-
tively. Supporting Information Table S3). The low average
MP of HC can be attributed to their low Molwt and #Heavy
(the average of Molwt and #Heavy is 164.7 and 12.0,
respectively) and their limited ability to form hydrogen
bonds compared with OC and OHC (the average of the
number of hydrogen bond donors (#Donor) is 0. Supple-
mentary Figure S7). Among OC, ethers and esters, with low
average MPs of 291.3 and 326.6 K, respectively, are potential
categories for low-temperature electrolytes (Supporting
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Figure 2. Data collection, statistical analysis, and visualization of MPs, BPs, and FPs. (a) The schematic of data collection. Batch and rapid data
acquisition are implemented using APls, with a focus on ensuring that common electrolyte molecules are included in our constructed database.

(b) Frequency distribution graphs of data for MPs (left), BPs (medium), and FPs (right). The graphs include these properties as well as molecular
weight (Molwt) and the number of heavy atoms (#Heavy), with these attributes normalized to a range from 0 to 1 using minimum and maximum
normalization. The scale in the vertical direction represents the number of molecules. (c) Visualization analysis of data for MPs (left), BPs

(medium), and FPs (right). Molecules are represented using the molecular access system (MACCS), and cluster analysis is conducted using the t-
distributed stochastic neighbor embedding (t-SNE) algorithm. Molecules are visualized in the graph, with each data point representing a molecule

and the color gradient from dark to light indicating property values increasing from low to high.

Information Table S3). Additionally, Si and P elements can
reduce the average of MPs to 240.4 and 304.2 K, respec-
tively. Although P-containing molecules have a lower
average BP than the whole (406.9 K vs. 442.1 K), their FPs
are relatively higher (386.4 K vs. 350.3 K) (Supporting
Information Table S4 and S5). P-containing molecules tend
to decompose to produce PO,e and HPO,e radicals and the
radicals can capture He and OHe radicals generated during
combustion, which explains why flame retardants usually
include P elements.
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Interpretability and Knowledge Discovery

Besides functional groups, the KPI framework further
automatically extracts 64-dimensional molecular descriptors,
including the number of atoms, the nature of bonds, func-
tional groups, and electronic properties (Figure 3a and
Supporting Information Table S6-S9). Subsequently, the
heat map is used to examine the correlations between the
features (Supplementary Figure S8-S10), and SHAP is
utilized to analyze the impact of each molecular feature on
MPs, BPs, and FPs. The importance of all molecular features
is analyzed, and the top ten features are visualized (Fig-
ure 3b and Supporting Information Table S10). The vertical
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Figure 3. Feature extraction and interpretable analysis based on SHAP. (a) The schematic of molecular feature extraction. Utilizing the RDKit
toolkit, the SMILES serves as the input. Extracted features include the number and mass of atoms, the nature of bonds, functional groups, and
electronic properties. These features are subjected to interpretable analysis. (b) SHAP feature importance ranking for MPs (left), BPs (medium),
and FPs (right). The 64-dimensional features extracted for each SMILES of molecule serve as the input, and analysis is performed using the SHAP
algorithm. The top ten most important features identified are visualized. The SHAP value indicates the contribution of each sample point to the
performance. The color gradient from dark to light represents the increasing values of each feature.

display reflects the distribution of molecules for each
feature, and the horizontal display shows the contribution of
feature values to the prediction outcomes. Overall, MPs,
BPs, and FPs are primarily influenced by the number of
atoms in the molecules and the nature of the bonds, while
electronic properties predominantly affect the BPs and FPs
of the molecules.

For MPs, the significance of bond features accounts for
48.9 % (including #Donor, the number of rings (#Ring), the
number of atoms on the maximum ring (#Nring), the
number of double bonds (#R=R), and the number of
rotatable bonds (#Rot)) among the top ten features, and the
number of atoms accounts for 30.5 % (including the number
of heteroatoms (#Het), #Heavy, Molwt, and the ratio of
heteroatoms to carbon atoms (#Het/#C)), which is consistent
with the discussion in the previous section. The interpretable
machine learning can further help identify important factors.
(Figure 3b and Supporting Information Table S11 and S12).
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Specifically, #Donor ranks first, with an importance share of
18.7%. Compared to molecules without any donor, those
with one, two, and three donors exhibit an average MP
increase of 65.6, 56.0, and 35.4 K, respectively (Supplemen-
tary Figure S11 and Supporting Information Table S13). The
increase of MP can be explained by the formation of
hydrogen bonds, which are generally stronger than typical
van der Waals forces and enable molecules to form ordered
network structures due to their directionality. However,
there is no obvious change in the average MP when #Donor
reaches 4, which is due to the saturation of the formation of
hydrogen bonds between molecules.

Following #Donor, the importance of the #Ring in a
molecule and the #Nring accounts for 14.6 % and 11.4 %,
respectively (Figure 3b and Supporting Information Ta-
ble S11). Compared to linear molecules, molecules contain-
ing a single ring increase the average MP by 77.7 K, and as
#Ring increases, the average MP also rises progressively
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(Supplementary Figure S12 and Supporting Information
Table S14). The increase of MP is due to the conformational
constraints imposed by rings, which lead to tight molecular
packing and thus enhance intermolecular forces. The #R=R
shows a strong positive correlation with MP, and each
additional double bond in a molecule increases the average
MP by approximately 30 K (Supplementary Figure S13 and
Supporting Information Table S15). This effect is attributed
to the rigidity imparted by double bonds and their contribu-
tion to molecular conjugation. The negative correlation
between the #Rot and MP also indicates that a reduction in
molecular degrees of freedom and increased rigidity can
raise MP, which is consistent with the findings related to the
#R=R.

For BPs and FPs, the importance of the number of atoms
in a molecule accounts for 48.6 % and 47.3 %, respectively,
and electronic properties also play significant roles, contri-
buting 14.5% and 13.4 %, respectively (Figure3b and
Supporting Information Table S12). Compared to MPs, the
importance analysis changes, which can be attributed to the
transition from liquid to gas states in BPs and FPs, as
opposed to the transition from solid to liquid states. In the
liquid state, the intermolecular distances are larger than in
the solid state, thereby reducing the influence of bond
properties and amplifying the impact of the intrinsic
molecular properties. A strong positive correlation is
observed for Molwt and #Heavy concerning BPs and FPs,
especially in HC molecules (Supplementary Figure S14 and
S15). Regarding bond nature, over 65 % of molecules have
no donor, and the maximum #Donor in a molecule is three
(Supplementary Figure S16 and S17). Therefore, the effect
of hydrogen bonds is less important on BPs and FPs
compared with MPs, which can also be interpreted from the
perspective of different phase transitions. Nonetheless, the
#Donor still shows a positive correlation with both BPs and
FPs, which is related to the ability of hydrogen bonds to
increase intermolecular forces and structural stability.

Furthermore, a certain negative correlation is observed
between BPs and the average electron affinity (AvgA),
average first ionization energy (Avgl), and average electro-
negativity (AvgX) of molecules. However, these relation-
ships are influenced by multiple factors and are difficult to
discern from simple linear correlations (Supplementary
Figure S18). These features reflect the ease of electron gain
or loss at the molecular level. Statistically, lower values of
these properties indicate weaker atomic binding capacities
for electrons, resulting in greater deformability and ease of
polarization at the molecular level. Consequently, stronger
intermolecular forces are present, leading to higher BPs.

The extracted knowledge facilitates a deep understand-
ing of how molecular properties vary across different
conditions. In low-temperature environments, for instance,
the linear molecule dimethyl carbonate has a melting point
of 273.6 K, which is lower than that of ethylene carbonate
(309.5 K), despite their similar molecular weights. Under
high-temperature conditions, the larger molecule adiponi-
trile exhibits a higher boiling point (568 K) compared to
succinonitrile (538 K). However, the inherent complexity of
molecular properties makes it challenging to predict them
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accurately using single structural descriptors alone, high-
lighting the necessity for precise prediction models.

Knowledge-Based Learning Model and Model Evaluation

To build accurate models for predicting chemical properties,
relying solely on data-driven approaches is insufficient. This
is because many models lack fundamental chemical intuition
or common sense, which can lead to gaps in understanding
the underlying molecular behaviors. Data alone may capture
patterns but fail to grasp the chemical principles that govern
molecular properties. By fully utilizing the chemical knowl-
edge discovered above, the KPI framework integrates this
understanding into data-driven models, making them not
only mathematically accurate and computationally efficient
but also chemically reasonable. Specifically, the KPI frame-
work integrates the above-discovered knowledge using Uni-
Mol as a foundation model for knowledge—data dual-
driven molecular property prediction (Figure 4a). Initially,
molecules are input into the model in SMILES, where the
molecular structure is converted into 11 different conforma-
tions, resulting in encoded representations of atoms and
bonds. Knowledge from the previously mentioned module is
then embedded into these representations, with the propor-
tion of knowledge integrated into the molecular encoding
regulated by two components: the knowledge purity con-
troller and the knowledge flow controller (collectively
referred to as knowledge controllers). The knowledge purity
controller adjusts how many dimensions of the knowledge
vector are concatenated with the molecular representation,
while the knowledge flow controller determines the propor-
tion of the selected knowledge vector to be integrated into
the molecular representation. Then, the representations are
processed through the transformer-based encoder, the
knowledge is embedded into the fully encoded molecular
vector to enhance the model's retention of knowledge.
Finally, the complete molecular vector is put into the
prediction head to determine the final properties.

The KPI initially sets the knowledge purity controller to
the maximum, namely all the 64-dimensional knowledge
vectors from the knowledge discovery module are fully
encoded into the molecular representation. Simultaneously,
the knowledge flow controller is set to auto-adjust, modulat-
ing the proportion of current knowledge embedded in the
molecular representation in a learnable manner. The MP,
BP, and FP databases were used for model training, with
each dataset divided into training, validation, and test sets in
a ratio of 8:1:1. Four-fold cross-validation was employed to
minimize the impact of data splitting on model performance.
Model parameters were continuously optimized throughout
the training, with the best model corresponding to the
validation set being saved. The final performance on the
previously unseen test sets was evaluated using the coef-
ficient of determination (Rz) and MAE. For MPs, BPs, and
FPs, the average R” is 0.966, 0.988, and 0.982, and the
average MAE is 11.3, 5.2, and 5.4 K, respectively (Support-
ing Information Table S16-S19). Compared to the non-
knowledge-embedded version, the performance of the
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Figure 4. Knowledge-based learning model and model evaluation. (a) The schematic of the knowledge-based learning model. The models use
molecular conformations as input, including encodings for atoms and bonds. Knowledge vectors are transformed and then embedded into the
molecular representation through purity and flow controls. Subsequently, the model is fine-tuned based on the Uni-Mol model, and the output
overall molecular representation is combined again with the knowledge. Finally, the combined representation is input into the prediction head for
predicting target properties. (b) Prediction results for the state-of-the-art models of MPs (left), BPs (medium), and FPs (right). When knowledge
vectors are embedded at levels of 20, 20, and 10 respectively, the predictions for MPs, BPs, and FPs are optimized. Each point represents a
molecule, with colors differentiating between the training and testing sets. Points closer to the diagonal indicate better prediction accuracy. (c)
Comparison of reported methods for MPs (left), BPs (medium), and FPs (right). Tests were conducted using the same datasets as those used in
previously reported papers, examining 7 datasets for MPs, 8 for BPs, and 5 for FPs. Each point represents the comparison result of a dataset, with
the name indicating the first author of the article and the number corresponding to its respective identifier. Complete dataset information and
references can be found in Supporting Information Table S26-528. The points above the diagonal indicate that our method outperforms the
methods previously reported in the paper.

model embedded with 64-dimensional knowledge improved To improve the model performance, KPI finely tunes the
by 5 %-11 %, preliminarily demonstrating the effectiveness  knowledge purity controller to adjust the effective purity of
of knowledge embedding. the embedded knowledge. Features ranking higher in
Angew. Chem. Int. Ed. 2025, 64, €202416506 (8 of 12) © 2024 Wiley-YCH GmbH
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importance contribute more significantly to improving
molecular prediction accuracy. As more features are
embedded, the introduction of less relevant knowledge
increases the learning burden to some extent, leading to a
decrease in prediction accuracy. Building upon the best-
performing baseline where all knowledge is embedded, the
KPI activates the knowledge purity controller in increments
of 10 features. For MP, BP, and FP predictions, the model
achieves its best performance when the amount of em-
bedded knowledge is 20, 20, and 10, with R? values of 0.974,
0.990, and 0.986, and MAE values of 10.5, 4.6, and 4.8 K,
respectively (Figure 4b and Supporting Information Ta-
ble S20). Compared to models without knowledge embed-
ding, performance for MAEs improves by 6.7 %, 14.7 %, and
17.8 % for MP, BP, and FP predictions, respectively. Even
compared to a random forest model dependent only on
knowledge, the improvements are 51.9%, 68.2%, and
555% for MP, BP, and FP predictions, respectively
(Supporting Information Table S21-S22). To further quanti-
fy the effectiveness of the embedded knowledge, ablation
studies were conducted to assess the contribution of various
components within the model. For the optimal models
predicting MPs, BPs, and FPs, modules embedding knowl-
edge about atoms, bonds, and the entire molecule compo-
nents were removed individually or in a combination way.
The results indicate that the removal of any component
leads to a decrease in the model performance (Supporting
Information Table S23-S25).

To evaluate the generalization of the KPI framework,
datasets used in reported methods were employed as base-
lines, involving approaches such as GC, QSPR-based multi-
variate linear regression, and machine learning. The KPI
framework achieves the SOTA results in 18 out of 20
datasets collected (Figure 4c). For MP and FP predictions,
the KPI consistently outperformed all other methods.
However, for BP predictions, the two methods showed
slightly higher performance, which can be attributed to the
randomness brought by the small size of the test sets,
consisting of 8 and 18 data points, respectively. Supporting
Information provide detailed information on the molecular
species, scale, and methods (Supporting Information Ta-
ble S26-S28). Overall, the KPI framework exhibits robust
predictive and generalization capabilities, enabling precise
predictions for MPs, BPs, and FPs.

KPI-Assisted Electrolyte Molecular Design

The KPI framework is strongly supposed to accelerate the
development of wide-temperature-range and high-safety
electrolytes for advanced batteries. First, KPI can quickly
lock onto potential molecular space through neighbor
searches based on the dimensionality-reduced maps ob-
tained from cluster analysis (Figure 5a). For instance, in the
primary neighborhood of DOL, which is known for its good
low-temperature performance, tetrahydrofuran®! with a
similar structure and a low MP can be discovered (Support-
ing Information Table S1). More inspirationally, the KPI
can continue to explore the secondary neighborhoods, and

Angew. Chem. Int. Ed. 2025, 64, €202416506 (9 of 12)
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promising molecules such as tetraethyl orthosilicate and
bis(2-ethylhexyl) hydrogen phosphate were found. Similarly,
46 and 242 molecules with similar structures were found in
the primary and secondary neighborhoods of the targets
when searching in the BP and FP clustering maps (Support-
ing Information Table S1). Second, the KPI framework can
accurately and rapidly predict molecular properties in a
large space, providing a powerful tool for high-throughput
screening of electrolyte molecules (Figure 5b). For instance,
15 molecules with CAS ID (Figure 5c) and 14 molecules
without CAS ID (Figure 5d) were screened out from a large
database, namely QM9,*® containing 133, 885 molecules
when setting a selection criterion of MP smaller than 230 K,
BP larger than 430 K, and FP larger than 360 K after the
structural filtering (including removing molecules containing
active hydrogen groups (—OH, —COOH) and restricting the
Molwt <600 and #Heavy <30) (Supplementary Figure S19,
S20, and S21). Compared to the original dataset, the high-
throughput screening reduced the pool by more than 4, 600
times, significantly accelerating the molecular discovery.
Based on the screening results, we identified familiar
molecules such as propylene carbonate (PC), which is
known for its wide temperature range, high flash point, and
strong solvating ability, originally adopted in the 1950s.
Recently, Xie et al.”! developed a PC-based electrolyte with
a wide temperature range from —90 to 90°C by tuning non-
solvating interactions. Additionally, nitrile-based electrolyte
molecules were screened out. In fact, extensive research has
focused on nitrile-based electrolytes,**! including molecules
with a single cyano group (acetonitrile,) propionitrile,*”
isobutyronitrile,*! valeronitrile®), molecules with multiple
cyano groups (succinonitrile,” adiponitrile®), and alkoxy
nitrile compounds (3-methoxypropyionitrile®'). The mole-
cules we identified include homologous compounds that
share structural similarities (differing by several —CH,
groups) with these reported molecules, suggesting their
potential in wide-temperature-range applications.

The KPI framework boasts extensive versatility and
achieved the SOTA models for predicting molecular MPs,
BPs, and FPs. These property prediction models are not
only crucial for the development of advanced electrolytes
but also play a significant role in industries such as
petroleum and fuels.” Besides, the KPI framework integra-
tes data organization and knowledge discovery with prop-
erty prediction, and supports the analysis of various
molecular properties, providing powerful tools for high-
throughput acquisition of molecular properties and discov-
ery of domain knowledge. This knowledge—data-driven
framework throughout the entire process sets a new
paradigm for the developing deep learning models, combin-
ing knowledge discovery and embedding to significantly
enhance the performance of artificial intelligence methods
in practical applications.

The prediction MAE of MPs is consistently larger than
that of BPs and FPs, which involve transitions between
liquid and gas states and can be accurately predicted using
only molecular features. However, MPs involve the tran-
sition from solid to liquid and the intermolecular interac-
tions within the crystal are stronger than those in liquids. As
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Figure 5. The KPI framework promotes advanced molecular discovery. (a) Molecular neighbor search identifies potentially valuable molecules.
Using the well-known low-temperature performance of 1,3-dioxolane (DOL) and ethyl acetate (EA) as central points, primary and secondary

neighborhoods are explored for potential molecules. The clustering diagram is a local enlargement of the MP from Figure 1c. (b) High-throughput
screening progressively narrows down the molecular chemical space. Starting with 133,885 molecules from QM9, three layers of filtering are
applied, requiring an MP below 250 K, a BP above 450 K, and an FP above 380 K, ultimately yielding 15 molecules with Chemical Abstracts Service
Registry Number (CAS ID) and 14 molecules without CAS ID. (c) Five molecules with CAS ID were obtained from the high-throughput screening.
The skeletal formula, CAS ID, MP, BP, and FP of each molecule are present. The complete list of molecules can be found in Supplementary
Figure S20. (d) Five molecules without CAS ID were obtained from the high-throughput screening. The skeletal formula, SMILES, MP, BP, and FP

of each molecule are present. The complete list of molecules can be found in Supplementary Figure S21.

a result, the current molecular descriptors can not ad-
equately describe solid-liquid transition and crystallographic
information as prior knowledge is necessary to improve the
prediction accuracy of MPs in further model development.

Angew. Chem. Int. Ed. 2025, 64, €202416506 (10 of 12)

Conclusions

A knowledge—-data dual-driven molecular property predic-
tion framework, named KPI, has been developed to predict
MPs, BPs, and FPs of electrolyte molecules, discover
electrolyte chemistry knowledge, and assist in advanced
electrolyte design. The KPI framework gathers molecular
properties, performs initial screening, and organizes it into
structured datasets. Through statistical descriptions and
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cluster analysis, the KPI framework preliminarily extracts
macroscopic knowledge and simultaneously delineates fea-
sible regions for the discovery of potential molecules.
Interpretable machine learning further explores the struc-
ture—property relationship at the atomic level, indicating
that MPs are primarily influenced by the nature of bonds,
while BPs and FPs are mainly affected by the number and
mass of atoms, as well as electronic properties. By embed-
ding the discovered knowledge into the prediction models
and finely tuning the purity and flow of knowledge, the KPI
framework achieves a low MAE of 10.5, 4.6, and 4.8 K for
MP, BP, and FP predictions, respectively, which reached the
SOTA results in 18 of 20 datasets. The KPI framework
demonstrated excellent talents in designing promising elec-
trolyte molecules. By utilizing molecular neighbor search
and high-throughput screening, 15 promising molecules with
CAS ID and 14 without CAS ID were predicted for wide-
temperature-range and high-safety batteries. The KPI
framework significantly deepens the understanding of mo-
lecular structure—property relationships and accelerates the
high-throughput screening of target molecules, thereby
greatly advancing the development of wide-temperature-
range and high-safety electrolytes.
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