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Abstract: Electrolytes are an essential part of recharge-
able batteries, such as lithium batteries. However, elec-
trolyte innovation is facing grand challenges due to the
complicated solution chemistry and infinite molecular
space (>10% for small molecules). This work reported
an artificial intelligence (AI) platform, namely Uni-
Electrolyte, for designing advanced electrolyte molecules,
which mainly includes three parts, i.e., EMolCurator,
EMolForger, and EMolNetKnittor. New molecules can
be designed by combining high-throughput screening
and generative Al models from more than 100 mil-
lion alternative molecules in the EMolCurator module.
The molecular properties, including frontier molecular
orbital information, formation energy, binding energy
with a Li ion, viscosity, and dielectric constant, can
be adopted as the screening parameters. The EMol-
Forger and EMolNetKnittor modules can predict the
retrosynthesis pathway and solid electrolyte interphase
(SEI) formation mechanism for a given molecule, respec-
tively. With the assistance of advanced AI methods, the
Uni-Electrolyte is strongly supposed to discover new
electrolyte molecules and chemical principles, promoting
the practical application of next-generation rechargeable

batteries.

Introduction

Rechargeable batteries, especially lithium (Li) ion batteries
(LIBs), have been widely applied in modern society, from
electronic devices, electric vehicles, and smart grids to the low-
altitude industry. These wide applications increasingly put
forward demanding requirements for next-generation batter-
ies with high safety, high energy density, high power density,
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long lifespan, or wide temperature window (3HIL1 W).
Among various battery technology innovations, designing
advanced electrolyte molecules has been strongly considered
as one of the most promising approaches due to the significant
role of electrolytes in stabilizing battery interfaces and
regulating battery performance.['~1 Besides, new electrolytes
can be directly adopted in current battery manufacturing
without a huge change in the equipment.

Looking back in the history of LIB developments, the use
of ethylene carbonate (EC)-based electrolyte is definitely a
milestone due to its irreplaceable role in forming a stable solid
electrolyte interphase (SEI) on the graphite anode.[*®] EC-
based ester electrolytes still dominate the current LIB battery
market after more than 30 years of development. However,
ester molecules are very active towards Li metal anodes,
which possess the largest specific capacity as well as a very
low electrode potential and are the most promising choice
for constructing ultrahigh-energy-density batteries.”] Beyond
ester molecules, ether solvents such as 1,2-dimethoxyethane
(DME) have been widely applied to Li metal batteries due
to their relatively high stability against Li metal anodes
and good Li salt solubility. High-concentration and localized
high-concentration electrolytes have been further constructed
mainly based on DME solvents and have demonstrated
promising electrochemical performances.’! Besides, many
electrolyte additives have been proposed to improve battery
3H1L1 W performance. For example, vinyl carbonate (VC)
and fluoroethylene carbonate (FEC) can be adapted to
produce a polymeric layer on the electrode surface. Trimethyl
phosphate (TMP) and biphenyl can be adopted as flame
retardants and overcharge protective additives, respectively.
All the above examples ensure the important role of new
electrolyte innovation in battery developments.[1011]

Tremendous electrolyte molecules have been explored
for rechargeable batteries mainly through a conventional
trial-and-error approach, while only dozens of them have
been applied to current commercialized batteries. The time-
consuming and low-efficiency approach to searching for
advanced electrolytes is a major challenge for promoting next-
generation batteries in the following years. Recently, the rise
of artificial intelligence (AI) technology has afforded new and
promising chances for the frontier research of chemistry and
materials science.l'>'8] Especially, the Nobel Prizes in both
Physics and Chemistry in 2024 are rewarded to Al-related
fields due to the great success of Al In the electrolyte field,
previous studies particularly focused on developing machine
learning potentials to accelerate the simulation and expand
length scales while maintaining first-principles accuracy.!'*-2!]
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Chen and authors developed data—knowledge-dual-driven
and explainable machine learning models to directly predict
electrolyte properties and establish molecular structure—
function relationships. Besides, several electrolyte molecules
have been predicted by combining machine learning models
and high-throughput screening.?>%}] Although great successes
have been demonstrated in applying Al to probing electrolyte
chemistry and designing promising electrolyte molecules, a
platform that integrates Al techniques and domain knowl-
edge for designing advanced battery electrolytes has not been
reported.

In this contribution, we reported the first Al platform,
namely Uni-Electrolyte, for designing electrolyte molecules
for rechargeable batteries. The Uni-Electrolyte integrates
advanced Al algorithms for electrolyte molecule design,
mainly including three modules. The EMolCurator mod-
ule can assist in designing new molecules through high-
throughput screening from an embedded electrolyte database
or an uploaded molecular database and even beyond previous
databases using Al-based generative models. When the target
molecule is defined, the EMolForger module can predict
the retrosynthesis pathways and reaction conditions, which
are helpful in synthesizing the predicted molecules. Last
but not least, the EMolNetKnittor module can unveil the
reaction pathway of SEI products, which is supposed to
be a critical factor in stabilizing the electrolyte—electrode
interphase. Collectively, the Uni-Electrolyte is supposed to
discover new electrolyte molecules, including solvents and
additives, and further promote the practical application of
next-generation batteries.

Results and Discussion

Framework of Uni-Electrolyte

The Uni-Electrolyte aims to expedite the discovery, synthesis,
and analysis of novel electrolyte molecules using advanced
Al technology (Figure 1). The platform mainly includes
three interconnected modules: EMolCurator, EMolForger,
and EMolNetKnittor. By integrating the three modules, Uni-
Electrolyte offers a powerful and versatile platform for
accelerating the discovery and development of advanced
electrolyte materials. The detailed functions for each module
will be introduced as follows.

The EMolCurator enables efficient and precise molecular
design by combining advanced AI techniques and multi-
scale simulations. Promising molecular candidates can be
identified from vast chemical spaces by the four functions
of EMolCurator, including predicting molecular properties,
screening molecules according to their properties, searching
similar molecules, and generating molecules by AI models.

1. Molecular Property Prediction. The cornerstone of
EMolCurator is a robust quantitative structure—property
relationship (QSPR) model, trained on a comprehensive
electrolyte dataset constructed from density functional the-
ory (DFT) and molecular dynamics (MD) calculations.
The model accurately predicts various molecular properties,
including binding energy, the highest occupied molecular
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Figure 1. Schematic representation of the Uni-Electrolyte platform with
three modules. The EMolCurator module aims to design new electrolyte
molecules. Based on the embedded electrolyte database, QSPR and
Al-based generative models were trained. The EMolForger module can
predict the synthesis pathways and corresponding reaction conditions
of potential electrolyte molecules. It was built with a synthetic route
planner and Al-based single-step retrosynthesis predictor. The
EMolNetKnittor module assesses the filtered electrolyte species and
reaction database to propose chemical reaction networks and perform
SEl-product analysis.

Synthesns route

orbital (HOMO) energy, the lowest unoccupied molecular
orbital (LUMO) energy, viscosity (1), dielectric constant (¢),
and other relevant properties, from both two-dimensional
(2D) and three-dimensional (3D) molecular representations
(Figure 2a).

2. Multi-Criterion Screening. A multi-criterion screening
process is employed on a pre-designed database of elec-
trolyte molecules (Figure 2b). The process involves filtering
molecules based on multiple property criteria, such as desired
HOMO-LUMO gap, binding energy, or specific structural
features. By combining these criteria, a subset of molecules
could be identified that are most likely to meet the desired
specifications, accelerating the design process.

3. Molecular Similarity Search. A similarity search algo-
rithm that leverages QSPR-predicted molecular properties
was built upon a vector database (Figure 2c). A pgvector-
enhanced PostgreSQL backend was constructed to store
molecules and their corresponding property vectors. These
vectors, representing a combination of physical and electrical
properties, enable efficient similarity searches. When a query
molecule is input, either it is retrieved from the database
or its properties are predicted on the fly using a state-of-
the-art (SOTA) model. The query vector is then compared
to database vectors using a similarity metric, such as cosine
similarity, to identify molecules with similar property profiles.
The approach expands the search space while maintaining
focus on relevant chemical regions.

4. Molecular Generation. To overcome the limitations
of relying solely on existing datasets, an Al-driven molec-
ular generation module (AIGM) was built. The module
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Figure 2. Three functions of the EMolCurator module. a) The QSPR model is benchmarked and trained on the DFT and MD databases. It intakes 2D
or 3D molecular graphs and outputs their properties. b) Pre-designed candidate electrolyte molecules are screened with respect to user-defined
intervals. c) Query similar-properties molecules with the vector database, the queried vector itself is composed of the predicted properties from the
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Figure 3. The illustration of the retrosynthesis module. The module
includes two Al components, i.e., the G2GT One-Step AlRetro predictor
and the Askcos Synthetic Route Planner. During inference, the module
proposes purchasable starting reagents and potential intermediates,
along with detailed reaction conditions and prices.

was trained on the same DFT and MD dataset and can
generate novel molecules with targeted properties, including
HOMO-LUMO gap optimization, binding energy optimiza-
tion, and direct structural design. To ensure the practicality
of the generated molecules, a rigorous filtering pipeline was
implemented. For example, the stability of molecules (e.g.,
formation energy), the similarity of new molecules compared
with existing molecules in the dataset, and the synthesizability
of new molecules were considered.

The entire molecular design process is iterative, with user-
defined targets guiding the generation and filtering steps
(Figure S1). The workflow can be repeated until convergence
is achieved, leading to the identification of optimal molecular
candidates. By combining the above functions, the EMolCu-
rator module can provide a powerful tool for accelerating
the discovery of novel electrolyte molecules with tailored
properties. The Al-driven nature of the framework enables
rapid exploration of vast chemical spaces, leading to the
identification of promising candidates that may be difficult to
bed discovered through traditional methods.

After molecular design, obtaining the molecules is the
next step, which is supported by the EMolForger module. The
EMolForger module is an Al-powered retrosynthetic analysis
platform, which includes two parts, i.e., the G2GT One-Step
AlRetro Predictor and the Askcos Synthetic Route Planner
(Figure 3). The G2GT One-Step AlIRetro Predictor, built
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upon graph neural networks, ] demonstrates exceptional
capability in identifying and evaluating feasible one-step
retrosynthetic transformations. Through extensive training on
comprehensive chemical reaction databases, the predictor has
developed robust algorithms for assessing chemical plausibil-
ity, establishing a reliable foundation for synthesis planning.
The Askcos SOne-Step AlRetro Predictorynthetic Route
Planner builds upon these initial predictions to optimize
multi-step synthetic pathways.[>] The planner can conduct
detailed analyses of crucial reaction parameters, including
solvent selection, catalyst optimization, and temperature
conditions, while prioritizing both synthetic efficiency and
economic viability.

The practical implementation of EMolForger extends
beyond theoretical route planning through its sophisticated
reagent analysis capability. The system provides comprehen-
sive specifications for chemical reagents while conducting
detailed cost analyses, enabling researchers to make well-
informed decisions regarding reagent selection and alter-
natives. The effectiveness of EMolForger is substantially
enhanced by its domain-specific optimization, with models
fine-tuned using reaction datasets specifically relevant to
electrolyte molecule synthesis. The focused training approach
ensures exceptional accuracy within the specialized domain
of electrolyte chemistry, addressing the unique challenges and
requirements of this field.

Following the molecular design strategies and syn-
thetic planning capabilities discussed in previous sections,
understanding the behavior and decomposition pathways
of successfully synthesized electrolyte molecules becomes
crucial. The SEI formation, a critical process affecting battery
performance, requires sophisticated analytical tools for a
comprehensive investigation. The EMolNetKnittor module
was developed to probe the SEI formation mechanisms of
electrolytes (Figure 4).

The EMolNetKnittor employs a two-pronged approach
to analyze SEI formation. Initially, the input electrolyte
molecule is queried against a comprehensive built-in
database. If relevant species and reactions are identified,
the platform utilizes stochastic kinetic Monte Carlo (kMC)
simulations to construct a detailed reaction network. The
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Figure 4. lllustration of the SEl-analysis module. The input electrolyte molecule is queried against a built-in database at first. If related species and
reactions are found, the module utilizes stochastic kMC simulations to build a reaction network. The network then allows the identification of key
products and their formation pathways. However, if no matches are found in the database, the module offers an on-the-fly database building option,
which takes the queried molecule as input and generates species through fragmentation and recombination, followed by reaction enumeration. Note
that filters are applied to ensure the validity of both generated species and reactions.

network facilitates the identification of key products and their
formation pathways.

However, if the database lacks information about
the input molecule, the EMolNetKnittor provides an
on-the-fly database-building capability, which involves frag-
menting and recombining the input molecule to generate
potential species. Subsequently, one-step reactions are enu-
merated among these species, and rigorous filters are applied
to ensure the validity of both species and reactions. The
process results in a tailored database specific to the electrolyte
molecule under investigation.

To address the limitations of existing tools like
HiPRGen,?®] which supports only a subset of the LiBE[*’]
electrolyte database, the database in the EMolNetKnittor
module was expanded to encompass the entire LiBE dataset.
The expanding dataset enables the analysis of electrolyte
molecules containing a wider range of elements, such as F,
N, P, and S. Additionally, the database construction process
has been automated, empowering users to add custom
molecules and further broaden the application scope of
EMolNetKnittor.

QSPR Model Performance

The QSPR models were assessed regarding their capacity in
predicting critical physical and electronic properties, namely
e, n, HOMO, LUMO, and the binding energy with a Li
ion. The initial evaluation sets the stage for a deeper
exploration of the interplay between model architecture,
dataset characteristics, and property-specific performance.

To ensure the rigor of these benchmarks, the DFT
and MD database was partitioned into training, validation,
and test datasets in a 3.79:0.37:1 ratio (34358:3435:9056).
Further, the test dataset was split into Independent and
Identically Distributed (IID) and Out-of-Distribution (OOD)
subsets around a 1:1 ratio (4604:4452), enabling a nuanced
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evaluation of the models’ generalizability. OOD molecules
were identified using the Bemis—Murcko scaffold grouping
method,!”! which classifies molecules based on the rarity
of their molecular backbones. The methodology ensured a
meaningful comparison of model performance across familiar
and novel chemical spaces.

The benchmarking spanned both 2D and 3D QSPR
models, revealing distinct patterns in their predictive capa-
bilities. Table S1 summarizes the relative performance of
these models, providing a detailed comparison of their mean
absolute errors (MAE) on IID and OOD datasets. The
relative error was calculated with Uni-Mol!®] serving as
the baseline. Among the 2D models, which are input with
simplified molecular input line entry system (SMILES) strings
containing 2D topological information, those pre-trained on
large public datasets exhibited obvious advantages. G2GT,**!
pre-trained on the USPTOPY chemical reaction database,
consistently outperformed Uni-Mol, pre-trained on QM9.[3!]
G2GT achieved a relative error of 0.97 compared to Uni-
Mol’s 1.0, a 3% improvement. Notably, G2ZGT demonstrates
superior performance on all OOD metrics, indicating its
enhanced extrapolation ability. The results suggest that the
chemical reactivity data embedded in USPTO aligns better
with the prediction of physical properties like dielectric
constant and viscosity. Given its superior performance in
capturing and leveraging 2D information, G2GT can serve as
an excellent 2D information extractor.

For 3D models, the input 3D conformations were
generated using RDKit. These 3D QSPR models demon-
strated the pivotal role of geometric representation in
capturing molecular features. Equivariant models such as
LEFTNet[*! and PaiNNI®I significantly outperformed the
invariant SchNet[**] model, highlighting the importance of
symmetry-aware architectures. Notably, powerful invariant
models such as SphereNet!®*! were not considered here
due to their extremely high computational cost, as men-
tioned in previous reports.’?l LEFTNet emerged as the

© 2025 Wiley-VCH GmbH

85U017 SUOWILLIOD @A 111D 3|qeo! dde aup Aq pausenob aJe ssppiie YO ‘@SN Jo Se|nJ o A%eiq18ul|UO /8|1 UO (SUOIPUD-PUB-SWBIW0D A8 I ARe.q 1 BuUO//:Sdny) SUORIPUOD pue swie 1 8y} 88s *[6202/0T/Tz] uo AriqiTaulluo Ao|im ‘Ariqi Aisienunenybuss L Aq SOTE0SZ0Z 9BUe/Z00T OT/10p/LI0o A 1M AreJq Ul |UO//STIY WO} papeo|umod ‘0€ ‘5202 ‘LGLETZST



GDCh
A -

top-performing model, surpassing both SchNet and PaiNN
across all metrics, demonstrating a relative improvement
of approximately 6.0% and 6.6% over PaiNN and SchNet,
respectively. The superiority is likely attributable to its
architectural enhancements, such as the Local Substructure
Encoding (LSE) and Frame Transition Encoding (FTE)
modules, which enable comprehensive encoding of both local
and global molecular information. Notably, LEFTNet, despite
not being pre-trained, achieved comparable results to the
pre-trained model G2GT. For instance, on the OOD dataset,
LEFTNet achieved an MAE of 3.27 for dielectric constant
and 12.97 mPa s for viscosity, while G2GT had an MAE of
3.31 and 13.28 mPa s, respectively. These results suggest that
physical properties like dielectric constant and viscosity are
also structure-sensitive properties, and LEFTNet can serve as
an excellent 3D information extractor.

Furthermore, EMol-QSPR was developed as an ensemble
model to leverage the complementary strengths of the best-
performing 2D and 3D models. As demonstrated in the
benchmark results, G2GT and LEFTNet emerged as the top
performers in their respective categories. G2GT excelled in
2D topological information extraction through USPTO pre-
training, and LEFTNet showcased superior 3D geometric
representation through its advanced LSE and FTE modules.
By averaging these two high-performing models, EMol-QSPR
achieved a remarkable relative error of 0.94, demonstrat-
ing significant improvements over individual models, i.e.,
approximately 3% over G2GT and 4.4% over LEFTNet.
The ensemble’s effectiveness was particularly evident in chal-
lenging predictions, such as dielectric constant and viscosity
in the OOD dataset. For the dielectric constant, EMol-
QSPR achieved an MAE of 3.17, improving upon G2GT’s
331 and LEFTNet’s 3.27. Similarly, EMol-QSPR’s MAE
of 12.83 mPa s outperformed both G2GT (13.28 mPa s)
and LEFTNet (12.97 mPa s). These results validate the
strategic selection of G2GT and LEFTNet as ensemble base
models, effectively combining their complementary strengths
in 2D and 3D molecular representation to enhance predictive
accuracy and robustness.

Similarity Query Results

Based on the above reliable QSPR models, a similarity query
method has been developed to design new molecules with
similar characteristics to current promising molecules, such
as FEC used as electrolyte additives for Li metal anodes.
The capability of the similarity query method is ensured
by a comprehensive database containing 280000 molecules,
carefully curated through multiple screening stages. The
screening parameters include thermodynamic stability fil-
tering (formation energy <0 eV atom™!) and synthetic
accessibility evaluation (RAScore > 0.9[31),

Taking ethyl methyl carbonate (EMC), a widely used com-
mercial electrolyte solvent, as an example, several new solvent
molecules, including both linear carbonates and branched
variants, can be screened out (Figure 5). The new molecules
share similar characteristics to EMC (E, = —1.53 eV, ¢ = 1.34,
n = 5.5 mPas, HOMO = —7.35 eV, and LUMO = 0.02 eV).
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Figure 5. The query results of the EMC molecule. For each molecule, a
2D topology and a SMILES string are provided. The number of bottom
the molecules is property vector ordered as binding energy (eV),
dielectric constant, viscosity (mPa s), HOMO (eV), and LUMO (eV).

Despite structural variations, all retrieved molecules maintain
similar binding energies (from —1.29 to —1.68 eV) and
HOMO energy levels (from —7.12 to —7.61 eV), suggesting
these properties are primarily determined by the carbonate
functional group. Especially, dimethyl carbonate, which is
widely adopted in commercialized electrolytes and is exper-
imentally recognized to be similar to EMC, was successfully
identified by such a query process. Besides, the presence
of CAS Registry Numbers for most retrieved molecules
indicates that they have been officially registered and are
likely commercially available, providing strong validation for
the practical utility of our search algorithm.

Property-Targeted Generation Results

Beyond the above query method, an Al generation model
was further developed to design property-targeted molecules
out of the embedded electrolyte database. Three distinct
molecular generation tasks were specially investigated to
demonstrate their practicability. 1) The generation of elec-
trolyte molecules targeting a specific HOMO-LUMO gap;
2) the generation of molecules characterized by low binding
energy and specific chemical formulas; 3) the generation of
molecules exhibiting structural similarity to user-provided
templates, represented as fingerprints.

Given the inherent stochasticity and potential instabil-
ity associated with Al-generated molecules, an automated
molecular cleaning workflow was established. The workflow
serves as a critical post-generation filter, ensuring the quality
and reliability of the generated molecular candidates. The
workflow sequentially removes molecules that fail topolog-
ical checks, indicating structural inconsistencies; duplicate
molecules, eliminating redundancy; molecules already present
in the training and validation sets, ensuring novelty; and
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Figure 6. The out-of-domain performance of the generative model with
respect to HOMO-LUMO properties. a) The training dataset is sparse
in the targeted area and does not contain the DME molecule. b) The
generated dataset is relatively dense in the targeted area and includes
DME molecule.

molecules with low synthetic accessibility scores (RAScore
<0.8), prioritizing molecules amenable to practical synthesis.

The evaluation of the generated molecules employs a suite
of metrics tailored to the specific task. For property-targeted
tasks (Tasks 1 and 2), SOTA pre-trained models were utilized
to predict the targeted properties, and the distribution of
these properties is compared to that of the training set. The
comparison provides a quantitative measure of the model’s
ability to generate molecules with the desired characteristics.
For the fingerprint-targeted task (Task 3), the Tanimoto
coefficient®’] serves as the primary metric, quantifying the
structural similarity between the fingerprints of the generated
molecules and the target fingerprints. The coefficient provides
a direct assessment of the model’s success in replicating the
desired structural features.

The evaluation of property-targeted generation com-
mences with Task 1, focusing on the generation of molecules
with a predefined HOMO and LUMO values. Two distinct
generative model architectures were investigated: diffu-
sion models, specifically the Equivariant Diffusion Model
(EDM),I*] and autoregressive models represented by the
conditional Generative-Schnet (cG-Schnet).[*! Initial com-
parative analysis reveals that the classifier-guided EDM
demonstrates superior performance in generating molecules
with targeted HOMO-LUMO gaps (Figure S2). Accordingly,
DME, a molecule absenting from the original dataset yet
residing in a relatively sparse region of the HOMO-LUMO
gap distribution was considered (Figure 6a). When the
model is tasked with generating molecules within this region,
the resulting molecules exhibit a concentrated distribution
around the targeted area and successfully include DME
(Figure 6b), highlighting the model’s sensitivity to conditional
guidance and its ability to explore and populate sparse
regions of the chemical space. Besides, examples of other
generated molecules are provided in Table S8. The out-of-
domain performance, the ability of the model to generate
molecules with properties beyond the scope of the training
data, is a crucial indicator of its generalizability and practical
utility in molecular design.
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Tasks 2 and 3 involve generating molecules with low
binding energy and specific chemical formulas and gener-
ating molecules with structural similarity to target finger-
prints, respectively. Autoregressive models are the focus of
this investigation, given the current limitations in readily
adaptable diffusion models for these specific tasks. Within
the autoregressive framework, variants of cG-Schnet were
explored, specifically focusing on the impact of encoder archi-
tecture. The original encoder was replaced with LEFTNet
architecture. The results indicate that cG-LEFTNet exhibits
comparable performance on Task 2 and superior performance
on Task 3 (Figures S3 and S4, Table S3). The enhanced
performance is likely attributable to the superior encoding
capabilities of LEFTNet, enabling it to more effectively
capture and represent the intricate relationships between
molecular structure and properties.

Retrosynthesis Validation

Following the successful generation of molecules with tar-
geted properties, the focus shifts to ensuring the practical
feasibility of synthesizing these novel electrolyte candidates.
A critical component of this feasibility assessment is the
ability to predict viable synthetic pathways, a task typically
addressed through retrosynthetic analysis. However, existing
retrosynthesis methodologies are predominantly tailored for
pharmaceutical molecules, relying heavily on template-based
single-step predictors that often exhibit limited perfor-
mance when applied to the structurally distinct domain of
electrolytes. To overcome the limitation and enhance the
applicability of retrosynthesis to electrolyte design, two key
improvements were implemented.

First, the single-step predictor was replaced with the
template-free model G2GT. The transition to a template-
free approach is motivated by its potential for improved
predictive capability outside the original training domain. To
quantify the benefit of the substitution, a comparative analysis
was performed against the established retrosynthesis method
Askcos, utilizing an IID dataset comprising 100 electrolyte
molecules. The performance of each method was evaluated
based on its ability to correctly predict the immediate
precursors (single-step prediction) for each target molecule,
as measured by Top-k accuracy (where k = 1, 2, 3, 4, and
5) and the number of molecules for which at least one
correct precursor was identified within the Top-k predictions
(“Number of Molecules Recalled”).

The above comparison results on one-step retrosyn-
thesis demonstrate that the G2GT predictor consistently
outperforms Askcos in terms of Top-k accuracy across all
values of k (Table S4). Specifically, G2GT achieved a Top-
1 accuracy of 0.529 compared to Askcos’s 0.452, indicating a
higher probability of identifying the correct precursor in the
first prediction. Furthermore, when evaluating the complete
retrosynthetic planning, ASKCOS finds a smaller number of
molecule retrosynthetic routes (8) compared to the G2GT-
based retrosynthesis planner (17), suggesting G2GT can cover
more electrolyte molecules. The combination of the G2GT
single-step predictor and the Askcos path planner, termed
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G2GT-Askcos (Figure 3), leverages the strengths of both
approaches, combining accurate single-step predictions with
efficient path planning capabilities.

Second, to further enhance the performance of the
retrosynthetic predictor within the electrolyte domain, the
original USPTO reaction dataset was augmented. A subset
of 1500 reactions was extracted from a larger pool of 1.1
million reactions in Reaxys, based on the structural similarity
between the reaction products and common electrolyte
molecules. The similarity was quantified using ECFPI*’! and
the cosine similarity function. The selected reactions exhibit a
minimum product similarity of 0.53 and an average similarity
of 0.65, ensuring that the augmented dataset is relevant to the
target chemical space.

Following fine-tuning with the augmented dataset, the
G2GT single-step predictor demonstrates improved adapta-
tion to the electrolyte domain. The adaptation was exempli-
fied through a case study involving the retrosynthetic analysis
of fluorinated diethoxyethane derivatives (F3DEE, FADEE,
F5DEE, and F6DEE), which were first reported in 2022.
Importantly, the training dataset, i.e., USPTO, was published
in 2016, effectively eliminating the possibility of data leakage
and demonstrating the model’s generalization capabilities.
The reactions proposed by G2GT-Askcos for these molecules
closely resemble those reported in the literature,!*!l validat-
ing the efficacy of the proposed retrosynthesis framework
(Figure 7). In each case, the predicted reagents are indicated
above the reaction arrow, and the corresponding reaction
conditions are noted below. Another retrosynthesis case is the
only molecule missing a CAS ID in the EMC query result
(SMILES: CCCC(C)OC(=0)OC) (Figure S5). The prices
of the starting materials are indicated above the substances
(Figure 7). Through cost analysis of different pathways, it
was found that the synthesis costs of F3DEE, FADEE, and
F6DEE are relatively high. Besides, the key raw materials for
these pathways are expensive, making it difficult to reduce the
overall synthesis costs. The synthesis cost of FSDEE is lower,
achieving an economically efficient synthesis.

The successful prediction of plausible synthetic pathways
for these representative electrolyte molecules underscores the
potential of the G2GT-Askcos framework to facilitate the
experimental validation and subsequent synthesis.

SEI Formation Analysis

Following the validation of synthetic accessibility, the investi-
gation turns to predict the impact of the designed electrolyte
molecules on battery performance, specifically focusing on the
formation of SEI. Understanding SEI composition is crucial
for designing electrolytes that enable stable battery cycling. To
predict SEI formation pathways, the EMolNetKnittor module
was developed.

Compared with previous approaches,”! EMolNetKnittor
offers significant advancements, including the integration
of an expanded dataset encompassing the entire LiBE
electrolyte databasel”’] and a fully automated workflow for
custom database construction by users (Figure 4). These
improvements enable the analysis of SEI formation across
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Figure 7. The retrosynthesis results of a) FEDEE and F3DEE, b) FADEE
and F5DEE. The proposed reagents are de-noted above the reaction
arrow, while the reaction conditions are labeled underneath.

electrolyte chemistries with great diversity, including those
containing F, N, P, and S. Additionally, EMolNetKnittor
delivers high flexibility and scalability, allowing researchers
to explore SEI formation pathways comprehensively and
efficiently. By leveraging these capabilities, EMolNetKnittor
provides deep insights into SEI formation mechanisms, paving
the way for designing next-generation electrolytes for stable
battery cycling.

To demonstrate the utility of EMolNetKnittor for predict-
ing SEI formation pathways, the decomposition of FEC was
focused on as an example as it is a widely used electrolyte
additive known to promote the formation of stable SEI layers
(Figure 8). The analysis begins with the initial coordination
of FEC with a Li ion (Li-FEC). EMolNetKnittor predicts
that the transition from a single coordination state to a
double coordination state (Figure 8a) is thermodynamically
favorable. The prediction aligns with previous computational
and experimental studies*?) that have identified the double
coordination state of Li-FEC as a key intermediate during the
formation process of SEI. Following the formation of the sta-
ble double coordination complex, EMolNetKnittor predicts
a ring-opening reaction of Li-FEC (Figure 8b), leading to
the formation of an open-chain intermediate. This interme-
diate then interacts with another double-coordinated Li-FEC
molecule, resulting in the formation of a stable dimeric
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while the reaction conditions are labeled underneath.

intermediate (Figure 8c). Finally, these dimeric intermediates
undergo further reactions to form a polymeric SEI component
and LiF (Figure 8d). The predicted polymeric structure
is consistent with experimental observations of SEI layers
formed from FEC-containing electrolytes, which often exhibit
a significant fraction of polymeric and oligomeric species.

Another case study of a new molecule (SMILES:
O=C1COC(=0)01) was considered for integrating the three
functions of the Uni-Electrolyte platform. The new molecule
was generated by Al models taking EC as the target. After
multi-criteria screening including topology check, duplication
removement, and stability checking, the top ten molecules
were confirmed and ranked according to their similarity to
the EC molecule (Figure S6 and Table S6). The EMol-
Forger module further predicted the retrosynthesis pathway
and reaction conditions of the new molecule, and the
EMolNetKnittor module predicted possible decomposition
pathways in the presence of lithium oxide. A ring-opening
reaction mechanism was predicted, and the Gibbs free energy
of the reaction is around —4.98 eV, indicating a strong trend
for such a reaction.

The case studies vividly illustrate the potential of EMol-
NetKnittor to provide valuable insights into the complex
decomposition pathways of electrolyte molecules and the
resulting SEI composition. The ability to predict the potential
SEI products formed under operational conditions offers a
powerful tool for guiding the design and optimization of elec-
trolyte formulations, enabling the development of batteries
with enhanced performance and longevity. Furthermore, the
automated database construction and expansion capabilities
of EMolNetKnittor make it readily adaptable to the explo-
ration of novel electrolyte chemistries and the investigation
of SEI formation in emerging battery technologies.
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Conclusion

An AI platform, namely the Uni-Electrolyte, has been
developed to design battery electrolyte molecules based on
a data-driven approach. The Uni-Electrolyte integrates three
synergistic modules, i.e., EMolCurator, EMolForger, and
EMolNetKnittor. EMolCurator, the Al-assisted molecular
design framework, leverages QSPR models, multi-criterion
screening, similarity search, and Al-driven molecular gen-
eration to efficiently explore the vast chemical space and
identify promising electrolyte candidates with tailored prop-
erties. EMolForger, the Al-powered retrosynthetic analysis
module, bridges the gap between computational design and
experimental synthesis by providing optimized synthetic
routes and detailed reagent information. Last but not least,
EMolNetKnittor, the comprehensive SEI formation analysis
platform, enables detailed investigation of the complex inter-
facial processes that govern battery performance, providing
crucial insights into the SEI composition and formation
mechanisms. The integration of the three modules within
the Uni-Electrolyte platform affords a powerful and versatile
toolset, enabling an Al-driven design of advanced electrolytes
for next-generation batteries.
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