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The global energy transition urgently demands advanced battery technologies to address current climate
challenges, where molecular engineering plays a pivotal role in optimizing performance metrics such as
energy density, cycling lifespan, and safety. This review systematically examines the integration of
artificial intelligence (Al) into molecular discovery for next-generation battery systems, addressing both
transformative potential and sustainability challenges. Firstly, multidimensional strategies for molecular
representation are delineated to establish machine-readable inputs, serving as a prerequisite for Al-
driven molecular discovery (Section 2). Subsequently, Al algorithms are systematically summarized,
encompassing classical machine learning, deep learning, and the emerging class of large language
models (Section 3). Next, the substantial potential of Al-powered predictions for key electrochemical
properties is illustrated, including redox potential, viscosity, and dielectric constant (Section 4). Through
paradigmatic case studies, significant applications of Al in molecular design are elucidated, spanning
chemical knowledge discovery, high-throughput virtual screening, oriented molecular generation, and
high-throughput experimentation (Section 5). Finally, a general conclusion and a critical perspective on
current challenges and future directions are presented, emphasizing the integration of molecular
databases, algorithms, computational power, and autonomous experimental platforms. Al is expected to
accelerate molecular design, thereby facilitating the development of next-generation battery systems
and enabling sustainable energy innovations.

1. Introduction
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Fig. 1 The evolution of global renewable energy and dispatchable power capacity. (a) Global energy composition across scenarios (STEPS, stated
policies scenario; APS, announced pledges scenario; NZE, net zero emissions by 2050 scenario) through 2050. EJ stands for exajoules. Oil, coal, and
natural gas refer to unabated uses as well as non-energy use; clean energy includes renewables, modern bioenergy, nuclear, abated fossil fuels, low-
emission hydrogen, and hydrogen-based fuels; residual categories cover routine biomass and non-renewable waste.* (b) Global installed renewable
energy and energy storage capacity under STEPS and NZE scenarios (2022 baseline vs. 2030 projections). GW stands for gigawatts. Photovoltaics
specified separately; supplementary renewables comprise bioenergy, geothermal, concentrating solar power, and marine; storage systems include
compressed air, flywheel, and thermal technologies (hydrogen electrolyzers excluded). Batteries are the utility-scale batteries. BTM, behind-the-meter;
PH, pumped hydro.” (c) Dispatchable power capacity by technology in the NZE scenario (2022 historical data, 2030/2050 projections). TW stands for
terawatt. Hydrogen includes hydrogen and hydrogen-based fuel-fired power plants.” Data are obtained from ref. 4 and 7.

Agreement,” achieving net-zero CO, emissions by 2050 requires
a major overhaul of energy infrastructure.® Under International
Energy Agency’s net zero emissions (NZE) scenario, clean
energy is projected to supply 90% of global demand by mid-
century (Fig. 1a).” However, the intermittency of renewables
like wind and solar energy challenges grid stability, necessitat-
ing energy storage technologies.>® Global storage capacity is
expected to grow sixfold by 2030 compared to 2023, paralleling
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the tripling of renewable capacity (Fig. 1b).” Among storage
technologies, batteries have rapidly improved, with battery
costs reduced by 90% in less than 15 years.®° Beyond capacity
expansion, battery storage provides essential grid services
through secure dispatchable capacity.'® By 2050, batteries are
projected to provide over 4 TW of installed capacity through
continued innovation, becoming the dominant storage
solution (Fig. 1c).”

Molecules lie at the heart of battery innovation, fundamen-
tally shaping the performance, safety, and stability of modern
electrochemical systems.''™'® Among the various components,
the electrolyte is considered as the ‘“blood” of the battery,
enabling ionic conduction while electronically insulating the
electrodes."” Its molecular composition governs critical proper-
ties such as ionic conductivity,'®' electrochemical stability,>*>*
and flammability,>>** making electrolyte design central to
battery performance. Most electrolytes, whether in liquid or
gel form, are composed of small molecules or polymeric struc-
tures, whose physicochemical characteristics dictate the perfor-
mance across diverse battery systems. For instance, lithium (Li)-
sulfur (S) batteries,>*>® despite their high theoretical energy
density (2600 Wh kg™ "),””?® benefit from weakly solvating,
encapsulating-polysulfide co-solvents,”** such as hexyl methyl
ether, to reduce side reactions between soluble polysulfides and

This journal is © The Royal Society of Chemistry 2025
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the Li metal anode, extending cycle life from <60 to >140
cycles.*® Aqueous zinc (Zn) metal batteries, prized for their
intrinsic safety and low cost, are hampered by dendrite growth
and hydrogen evolution.***” By molecular engineering, Zn||Zn
cells were enabled to operate stably for 21 000 cycles (700 h) under
an extreme current density of 60 mA cm ?, representing a
technical breakthrough for practical Zn metal full cells.*® Solid-
state polymer batteries, recognized as highly promising next-
generation energy storage devices due to their high energy density
and enhanced safety profiles, nevertheless require meticulous
monomer design and polymer matrix engineering to achieve
practical ionic conductivity (>10"> S cm™ ') and stable interfacial
compatibility.**** Redox flow batteries offer cost-effective grid-
scale storage with inherent scalability.**** Molecular-engineered
redox-active organic molecules achieve electrochemical stability
>2 V (ideally over 4 V), facilitating the establishment of high-
energy storage systems.*’

In addition to electrolytes, electrode materials also depend
on precise molecular and structural design to deliver optimal
electrochemical performance.***° Of particular interest are
organic electrode materials, which afford environmental sustain-
ability, synthetic tunability, and resource abundance as alter-
natives to conventional inorganic compounds.’®”" Nonetheless,
challenges such as low electrical conductivity and limited oper-
ating voltage are often encountered.’®** To address these limita-
tions, structural motifs such as thiophene and furan rings are
frequently used to enhance hole mobility in hole-transporting
materials, while pyridine rings serve as key electron-withdrawing
groups in electron-transporting analogues.>*® Furthermore, the
operating voltage of organic electrodes can be finely tuned by
modulating the energy of the lowest unoccupied molecular
orbital (LUMO), highlighting the potential of molecular engi-
neering to systematically optimize electrode function.”” Rational
molecular engineering holds significant promise for overcoming
these limitations and achieving breakthroughs in electrode
performance. Furthermore, other essential components such as
binders®®*®* and separators®®* also benefit substantially from
rational molecular design. Tailoring their molecular structures
can improve mechanical strength, interfacial adhesion, thermal
stability, and ion transport properties, thereby contributing to
the overall performance and durability of the battery. Therefore,
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a unifying and versatile strategy of rational molecular design is
essential to guide the exploration of electrolytes, electrodes, and
auxiliary materials across a broad spectrum of battery chemistries.

1.2. Al for battery molecular discovery

While molecular design plays a foundational role in advancing
battery technologies, the routine discovery approaches rooted
in experimental screening remain slow and costly (Fig. 2).°® The
vastness of chemical space, combined with the need for precise
control over molecular structure-property relationships, ren-
ders purely empirical methods inefficient for rapid innovation
of advanced energy materials. In response, computational chem-
istry methods, such as density functional theory (DFT) calculations
and molecular dynamics (MD) simulations, have provided power-
ful alternatives for probing molecular behavior and guiding
rational design.®®”' However, as the breadth of chemical space
and the volume of data expand, computational methods become
increasingly resource-intensive, requiring more time and incurring
higher costs.”>”*

The emergence of artificial intelligence (AI) offers a promis-
ing opportunity to transform the scientific paradigm.”*”>
Unlike routine approaches that rely on explicit physical model-
ing, Al systems learn from data to capture hidden correlations.
The potential of this data-driven methodology has been widely
recognized across the scientific community, as reflected in the
2024 Nobel Prizes, with the physics prize honoring foundational
work in artificial neural networks (ANNs) by John Hopfield and
Geoffrey Hinton, and the chemistry prize recognizing computa-
tional protein design and prediction breakthroughs by David
Baker, Demis Hassabis, and John Jumper.”®”” These milestones
underscore the growing capability of AI in solving high-
dimensional, nonlinear problems in chemistry and materials
7880 with the continued expansion of computational
power, Al is poised to deliver transformative breakthroughs in
battery molecular discovery by significantly accelerating the dis-
covery process (Fig. 3). Through accurate, computationally tract-
able surrogate models, AI bridges the gap between theory and
experiment, thereby enabling the identification of novel, high-
performance battery molecules.®'®* Recent advances illustrate
the potential in this field. For instance, Qiang Zhang and Xiang
Chen’s group at Tsinghua University has applied Al to accelerate

science.

Fig. 2 Comparison of routine trial-and-error and emerging Al-assisted discovery of battery molecules.
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Fig. 3 A summary of the history of battery, Al, and computational power development. LIB, Li-ion battery; HCE, high-concentration electrolyte; LHCE,
localized high-concentration electrolyte; EC, ethylene carbonate; FEC, fluoroethylene carbonate; GPU, graphics processing unit. Revival of organic
electrode: reproduced with permission from ref. 89. Copyright 2008 Wiley-VCH. Electrolyte discovery with high-throughput screening: reproduced with
permission from ref. 90. Copyright 2014 American Chemical Society. Alkaline quinone flow battery: reproduced with permission from ref. 91. Copyright
2015 American Association for the Advancement of Science. “Water-in-salt” electrolyte: reproduced with permission from ref. 92. Copyright 2015
American Association for the Advancement of Science. Fully fluorinated electrolyte: reproduced with permission from ref. 22. Copyright 2019 Springer
Nature. Proposed weakly solvating electrolyte: reproduced with permission from ref. 93. Copyright 2020 Wiley-VCH. Data-driven insight into the

reductive stability: reproduced with permission from ref. 85. Copyright 2023 American Chemical Society.

electrolyte design by identifying molecular features that influence
reductive stability and constructing the data-knowledge dual-
driven framework for electrolyte molecular design.**®” Yi Cui’s
team at Stanford University has leveraged AI techniques to
establish structure-property relationships in electrolyte systems,
enabling the design of molecular candidates that exhibit high
Coulombic efficiency (CE).*® These representative efforts demon-
strate how AI can augment and accelerate molecular design
pipelines, uncover mechanistic insights, and guide experimental
exploration with higher precision.

While early studies have demonstrated the potential of Al in
battery innovation, there remains a lack of a comprehensive

Chem. Soc. Rev.

review focusing on Al-driven molecule-level design strategies
across the diverse landscape of battery chemistries. In response,
this review affords a critical overview of how cutting-edge Al
techniques are accelerating molecular innovation in batteries,
bridging the knowledge gap and outlining opportunities at this
emerging interdisciplinary frontier.

1.3. Scope of this review

In this contribution, the methodological and application inno-
vations of the AI technique to battery molecules are compre-
hensively summarized and prospected, including molecular
representation, AI models, molecular property prediction, and

This journal is © The Royal Society of Chemistry 2025
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molecular design for rechargeable batteries. Section 2 sum-
marizes molecular representation strategies, encompassing
foundational principles and computational methodologies
with emphasis on multi-dimensional encoding schemes. These
representation paradigms serve as the critical initial phase for
Al-driven molecular discovery by transforming chemical enti-
ties into structured machine-readable inputs. Section 3 system-
atically categorizes AI modeling architectures, detailing key
processes spanning data management, feature selection, model
construction, and performance evaluation. The section further
analyzes prevalent algorithms in molecular discovery including
classical machine learning (ML, supervised/unsupervised learn-
ing methods), deep learning (DL, four basic architectures), and
large language models (LLMs). Section 4 evaluates Al-powered
property prediction for battery components, including redox
potential, dielectric constant, ionic transport, and other
fundamental physicochemical properties. Such computational
capabilities provide robust tools for establishing structure-
property relationships in battery molecules. Section 5 examines
molecular design advancements through four approaches:
interpretable ML (IML) for knowledge discovery, high-
throughput virtual screening (HTVS), oriented molecular gen-
eration, and high-throughput experimentation (HTE). Case
studies demonstrate paradigm-shifting applications of these
methodologies in battery innovation. Finally, a summary con-
cludes with a comprehensive analysis of Al-driven molecular
discovery advancements in rechargeable batteries, coupled with
critical perspectives on unresolved challenges and emerging
research frontiers in the interdisciplinary domain.

2. Molecular representation

Molecular representation bridges the gap between molecular
structures and AI methods in molecular innovation by converting
chemical entities into numerical formats via feature engineering
or representation learning. Effective representations require basic
principles called the “2AI principles”, including accurate, appro-
priate, invariant, and interpretable. This section systematically
explores molecular representation paradigms, beginning with
classical techniques such as one-hot encoding (OHE) and mole-
cular fingerprints. Subsequent sections delve into advanced
approaches, including graph-based representations that encode
atomic connectivity and geometric descriptors preserving three-
dimensional (3D) conformational information. The integration
of expert-defined features with data-driven embeddings is empha-
sized, particularly in addressing challenges related to battery
innovation. Finally, emerging trends such as hybrid architectures
combining string or rule-based fragmentation with LLMs are
discussed, highlighting their potential to advance high-throughput
molecular discovery through chemically interpretable and com-
putationally efficient representations.

2.1. Concept of molecular representation

In the field of organic chemistry, various molecular representa-
tions, such as bond-line structures, ball-and-stick models, and

This journal is © The Royal Society of Chemistry 2025
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projection formulas, are frequently used to represent molecular
structures.”*°® These representations facilitate our under-
standing and manipulation of molecules in both experimental
and theoretical studies. By providing an intuitive depiction of
molecular structures, these representations enable accurate
predictions and analyses of molecular interactions, reaction
mechanisms, and other chemical properties. However, these
traditional representations are not directly suitable for compu-
ter input. As a result, molecular representation methods have
been explored to translate chemical molecular information into
forms that can be understood and processed by Al models.””"*°

Molecular representation refers to the abstraction of
chemical molecular characteristics and their subsequent conver-
sion into numerical data through specific encoding methods
(Fig. 4)."®'% The process serves as a crucial bridge between
chemistry and computer science, forming the foundation for
molecular Al research. In the development of battery-related mole-
cules, the relationship between a fundamental molecular structure
and its macroscopic properties, such as its impact on battery
performance, is often complex. Molecular representation sim-
plifies the complexity into a numerical format, enabling effi-
cient analysis and prediction through AI models.

The process of converting molecular structures into numer-
ical features is commonly referred to as feature extraction,
which is a critical component of feature engineering and
represents the first stage of an Al workflow."**'®” The core
objective of feature extraction is to draw on domain expertise to
distill essential information that reflects the characteristics of a
molecule from complex raw data.*® Feature engineering has
long played a pivotal role in traditional ML, where the quality of
input data and the chosen features significantly influence the
performance of the resulting models.'%®

With the advancement of DL technologies, feature engineering
has progressively merged with the training process of Al models,
giving rise to the research field of representation learning.'*®**°
Representation learning leverages neural networks to automati-
cally extract features from input data, thereby reducing the reliance

Molecular
representation

Real Computational
molecule representation

Representation learning

Fig. 4 The definition of molecular representation. Molecular representa-
tion refers to the numerical encoding of physical molecular entities for
computational interpretation, which contains molecular feature engineer-
ing and representation learning.

Chem. Soc. Rev.


https://doi.org/10.1039/d5cs00053j

Published on 22 September 2025. Downloaded by Tsinghua University on 10/21/2025 8:41:44 AM.

Review Article

on manually designed and selected features."''™'* The approach
enables AI to learn and extract meaningful features from vast
datasets more efficiently. Within the representation learning fra-
mework, more fundamental molecular structural features can be
directly utilized, allowing models to deeply explore structure—
property relationships, which increasingly positions representation
learning as a pivotal direction for accelerating molecular design
with AL. However, while representation learning can reduce the
reliance on pre-defined molecular features, the design of molecu-
lar representations should be aligned with the architecture and
optimization of neural network models to ensure that molecular
characteristics are effectively captured.”*""

2.2. Basic principles of molecular representation

An effective molecular representation method should meet the
four fundamental requirements called the “2AI principles” to
ensure high efficiency and practicality at the intersection of
chemistry and Al (Fig. 5).

2.2.1. Accurate. An accurate molecular representation is
defined by its ability to capture the breadth of chemical space
while simultaneously distinguishing subtle variations among
different molecules.**

First, representations are expected to encode complete mole-
cular structures.'*® Incomplete encodings can deprive AI models
of the full data context required for precise task execution. At the
same time, extraneous redundancy within the representation
should be minimized, since an overabundance of descriptors
can impose an unnecessary learning burden and degrade model
performance.""” Second, subtle distinctions between closely related
molecules must be faithfully preserved. For example, tautomeric
shifts often induce dramatic changes in molecular properties and
continue to challenge current representation schemes.''® If the
chosen descriptors fail to reflect these nuanced differences, the
ability of models to learn the unique characteristics of each

The “2Al principles”
for molecular representation

Accurate Appropriate
Invariant Interpretable

Fig. 5 The "“2Al principles” of molecular representation.
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molecule will be compromised, impairing their capacity to perform
complex chemical tasks.

2.2.2. Appropriate. An appropriate molecular representation
is one, in which descriptor selection is tailored to the specific
application context, as no single scheme has yet proven to be
universally optimal.””''® Considerations such as dataset size, the
choice of Al algorithm, knowledge-driven or generalization-driven
objectives, and which descriptors will yield the best performance.

When learning tasks involve relatively small sample sizes (on
the order of a few hundred), the adoption of low-dimensional
molecular representations is generally considered appropriate.'*®
For example, Li et al'*' selected 37 descriptors from an initial
pool of 199, and overall classification accuracy across six models
was raised from 46.8%-79.1% to 71.0%-83.7%. In addition,
Okamoto et al.'** predicted the redox potential of Li-ion battery
(LIB) additives using fewer features selected through importance
analysis, achieving comparable performance to using all features
while enhancing model interpretability. On the other hand,
representation learning is generally more suitable when working
with large datasets. Fang et al.''? trained the molecular represen-
tation learning model GeoGNN on 20 million data points, achiev-
ing state-of-the-art on 14 of 15 molecular property prediction
benchmarks. The size of the dataset is crucial for representation
learning models to stand out."*

The choice of representation is often aligned with the down-
stream AI architecture. Traditional ML algorithms typically
employ molecular fingerprints and descriptors, while DL archi-
tectures favor graph-based representations for graph neural
networks (GNNs) and string-based encodings for sequence
models. In addition, choosing an appropriate molecular repre-
sentation method also requires considerations from different
application scenarios. Domain knowledge-intensive tasks favor
expert descriptors and fingerprints encoding established
chemical principles, while generalization-driven applications
benefit from geometric DL that integrates molecular graphs or
coordinates through pretrain and fine-tune frameworks.

2.2.3. Invariant. The process of molecular representation learn-
ing typically relies on AI models to automatically extract features.
During modeling, it is crucial to carefully consider the invariance and
equivariance of the model, as these govern scalar properties such as
potential energy and vector quantities such as atomic forces.'**'*>
Embedding these symmetries incorporates physical priors, thereby
enhancing model training and improving accuracy.'**">

In the context of molecular modeling and neural network
training, invariance refers to physical quantities that remain
unchanged under certain transformations, while equivariance
implies that certain physical quantities change in a predictable
and consistent manner under specific transformations."**™*! Four
fundamental transformations dictate symmetry considerations:

(1) Translation: both potential energy and force magnitudes
remain unchanged, indicating that the molecular system exhibits
the same potential energy and forces at any position in space.

(2) Rotation: potential energy maintains rotational invar-
iance while forces demonstrate rotational equivariance; in the
latter case, vector directions rotate with molecular orientation
while magnitudes persist.

This journal is © The Royal Society of Chemistry 2025
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(3) Permutation: permutation refers to changes in the order
or position of atoms within a molecule. Forces exhibit equiv-
ariance in this context, while such permutations do not alter
the potential energy, since the interatomic interactions remain
unchanged.

(4) Reflection: chirality-related mirror transformations
maintain potential energy but symmetrize force vectors. Due
to the limited application of chiral molecules in battery sys-
tems, this transformation is generally not emphasized in most
contributions.*>

In practice, translational invariance is relatively straightfor-
ward to achieve, as the model does not rely on the absolute
coordinates of the molecule but rather on the relative coordi-
nates between atoms. Permutation invariance or equivariance
can also be implemented naturally within neural networks,
since the model is designed to be independent of the input
order, therefore avoiding input-order-sensitive architectures
such as RNNs along the atomic dimension. Consequently,
achieving rotational equivariance is a crucial consideration in
constructing molecular representation networks.

2.2.4. Interpretable. The interpretability of molecular
representations is expected to significantly enhance the under-
standing of structure-property relationships in molecular inno-
vation. Chemically meaningful representations are supposed to
adhere to established chemical principles and afford actionable
insights into the decision-making processes of predictive
models. Such interpretability helps ensure that AI predictions
remain consistent with domain knowledge while maintaining
the level of transparency necessary for experimental validation
and mechanistic hypothesis development. In this way, inter-
pretable representations facilitate the connection between Al
outputs and scientific reasoning, allowing it to be assessed
whether model predictions arise from chemically valid patterns
or from artifacts within the data.

Different representation methods possess varying degrees of
intrinsic interpretability. The routine low-dimensional represen-
tations, such as expert descriptors including dipole moment
and binding energy, are characterized by explicit encoding of
chemically intuitive features, which confers inherent interpret-
ability. Molecular fingerprinting techniques, exemplified by the
molecular access system (MACCS) keys, demonstrate interpret-
ability through their rule-based construction and chemically
intuitive feature encoding. These approaches utilize rule-based
systems to generate human-readable numerical embeddings
that align with fundamental chemical concepts. Although trans-
parent structure-property relationships can be established
through these representations, their reliance on predefined
feature spaces tends to limit predictive accuracy when applied
to complex material behaviors.

In contrast, DL approaches employ automated feature
extraction from molecular graphs and 3D conformations, often
achieving higher predictive performance. However, interpret-
ability is diminished due to the abstract nature of high-
dimensional latent representations. To address this limitation,
emerging methodologies incorporate physics-informed hybrid
architectures, in which domain knowledge, such as symmetry

This journal is © The Royal Society of Chemistry 2025
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constraints and quantum mechanical (QM) descriptors, is
systematically integrated into neural network models. These
advanced representations are designed to combine the expres-
sive capacity of DL with chemical consistency, thereby promot-
ing a balance between predictive accuracy and scientifically
meaningful interpretability.

2.3. Categories of molecular representation methods

Molecular representation design remains task-dependent, requir-
ing careful alignment between chemical knowledge, computa-
tional constraints, and scientific objectives. Representation
methods develop across one-dimensional (1D), two-dimensional
(2D), 3D, and four-dimensional (4D) scales:

(1) 1D sequential: OHE and strings prioritize computational
efficiency but lack spatial awareness.

(2) 2D topological: molecular fingerprints and graph struc-
tures encode connectivity patterns.

(3) 3D geometric: QM fields and coordinates preserve stereo-
chemical information.

(4) 4D dynamic: MD trajectories incorporate temporal evolu-
tion through atomic position time series.

Furthermore, from a methodological perspective, molecular
representations can be categorized into two principal paradigms:
fixed (expert-designed descriptors with explicit semantics) and
differentiable (neural network-generated latent embeddings)
representations. Modern hybrid architectures strategically com-
bine these paradigms, as exemplified by GNNs that employ atom-
type embeddings for initialization and equivariant Transformers
that construct 3D conformations from simplified molecular
input line entry system (SMILES) inputs.”***® The multi-
scale integration framework advances beyond conventional
feature engineering through systematic fusion of physical
principles with data-driven learning mechanisms. In this sec-
tion, the most commonly used molecular representation meth-
ods are introduced (Fig. 6).

2.3.1. One-hot encoding. OHE remains a foundational
technique in molecular representation, systematically convert-
ing molecular features into binary vectors.”®'*® Each prede-
fined chemical attribute, such as atom type, functional group, or
substructure, occupies a unique vector index activated (repre-
sented by 1) upon presence or deactivated (represented by 0)
otherwise. Implementation involves domain-informed vocabu-
lary construction, fixed-position feature mapping, and sparse
vector generation. For instance, a molecule containing benzene
rings and double bonds can activate corresponding indices in a
[hydroxyl, amino, benzene ring, double bond] vocabulary, yield-
ing [0,0,1,1].

Despite its simplicity, OHE exhibits critical limitations.
Firstly, vocabulary size linearly scales vector dimensions, caus-
ing computational inefficiency and dimensional curses at
thousand-feature scales. Secondly, binary activation discards
feature frequency and topological relationships, compromising
chemical fidelity. Thirdly, sparse representations exacerbate
overfitting risks through redundant zero inflation. Therefore,
advanced frameworks address these constraints by integrating
OHE as a foundational component within DL architectures.

141-144

Chem. Soc. Rev.


https://doi.org/10.1039/d5cs00053j

Published on 22 September 2025. Downloaded by Tsinghua University on 10/21/2025 8:41:44 AM.

Review Article

One-hot encoding

View Article Online

Chem Soc Rev

String Fingerprint

C(C(F)(F)F)OCC(F)(F)F

B (]

E f

EA - \ F
X/(\\X
E E

@
1

Electronic structure

n
‘ m v

Fig. 6 The categories of molecular representation methods.

Gilmer et al'*® demonstrated this synergistic integration
through message passing neural networks (MPNNs), where
OHE initializes atom-type embeddings for fundamental ele-
ments and quantizes bond distances into discrete, distance-
binned one-hot vectors. Large-scale systems like AlphaFold3"*®
further demonstrate the versatility of OHE in encoding biomo-
lecular entities, sequence alignments, and spatial relationships.
2.3.2. String. The development of molecular representation
systems began with the Wiswesser line notation in 1949,"4¢7'4°
which pioneered linear chemical encoding through alphanu-
meric combinations but faced obsolescence due to syntactic
complexity. Subsequently, the SMILES, introduced by David
Weininger in 1988,"*° revolutionized the field by prioritizing
human readability and computational compatibility. SMILES
employs element symbols for atoms, implicit hydrogen deduc-
tion, and explicit bond notation (single bonds omitted, double/
triple bonds marked as =/#). Cyclic structures are encoded
numerically, while branching uses nested parentheses. Aro-
matic systems alternate between explicit bond annotation
(e.g., C1=—CC—CC—C1) and lowercase atomic symbols (e.g.,
clcceecl), balancing structural clarity with compactness.
SMILES exhibit inherent non-uniqueness due to graph
traversal variations during generation, a property later exploited
for data augmentation via randomized atom ordering."*** To
address database standardization needs, canonical SMILES
emerged, enforcing uniqueness through deterministic rules like
Morgan identifier sorting.">*™'°° Subsequent advancements tai-
lored SMILES for Al integration: for example, self-referencing
embedded strings'®"'® introduced grammatical constraints to
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ensure valid structure generation, DeepSMILES"*>'%* optimized

syntax for neural network efficiency, and SMILES arbitrary
target specification (SMARTS)'®* %" extended functionality as
a substructure query language. SMARTS enhances SMILES with
logical operators, environment descriptors, and bond qualifiers,
enabling precise pattern matching.

Complementary identifiers address specialized requirements.
The International Union of Pure and Applied Chemistry®*™7°
nomenclature provides systematic structural descriptions but
lacks algorithmic friendliness. CAS registry numbers'’"'”?
enable compound tracking without structural insights. Interna-
tional chemical identifier (InChI)'”*"*”> and its hashed derivative
InChIKey'’*"”” employ layered encoding (molecular skeleton,
charge, stereochemistry) for cross-database compatibility, trad-
ing readability for standardization. Database-specific identifiers
(PubChem CID,'”® ChemSpider ID,'”® Material ID"®*'®") prior-
itize rapid indexing at the cost of cross-platform interoperability.
The ecosystem of string representations balances human inter-
pretability, computational efficiency, and application-specific
needs across chemical research and informatics.

2.3.3. Molecular fingerprint. Molecular fingerprint is a
molecular representation that encodes specific structural and/or
physicochemical features of a molecule into a numerical
vector.'8>'# These encodings, typically as binary presence indica-
tors or integer frequency counts, enable machine-readable
chemical data essential for similarity searching,'®® virtual
screening,"®® and AI model development.'*®'®” Early rule-based
systems like MACCS'®® employed expert-curated substructure dic-
tionaries, translating predefined features into binary bit strings.
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Initially, MACCS contained 960 expert-designed structural keys,
followed by the release of a publicly available 166-bit reduced
version (public MACCS keys), which can be efficiently computed
using open-source tools like RDKit'*® and OpenBabel.’*® Subse-
quent expansions, exemplified by the 881-bit fingerprint of
PubChem,'®" systematically cataloged pharmacophores and topo-
logical motifs. Such preset fingerprints have been widely used for
molecular similarity searching and substructure matching with
the Tanimoto coefficient.'”> The Tanimoto coefficient quantifies
molecular similarity by comparing the proportion of common
activated bit positions (i.e., the ratio of intersection to union of
bits) between two binary fingerprints."”® However, such finger-
prints inherently limit feature space to manual definitions, poten-
tially missing novel structural relationships.

Preset fingerprints faced inherent constraints in representing
novel chemical systems, driving innovation in topology-driven
encoding. The extended connectivity fingerprint (ECFP)'**'%
introduced as a significant implementation based on the atomic
environment concepts proposed by Morgan.'*® ECFP dynamically
encodes molecular topology through three stages: atomic initi-
alization (assigning identifiers based on atomic type/valence/
adjacent environment), iterative neighborhood expansion, and
hashing with redundancy removal. The process generates adap-
tive features without a predefined dictionary, capturing atomic-
to-global structural patterns. According to the different initial
atomic identifiers, the fingerprints generated by ECFP can be
divided into standard ECFP fingerprints (hash atomic physical
properties) and functional-class fingerprints (map to pharmaco-
phore functional codes). Additionally, depending on the range of
the expansion radius, the most applied ECFPx series includes
ECFP4 and ECFP6. By adjusting the expansion radius, a balance
between feature resolution and computational efficiency can be
further optimized.

Aside from the dictionary-based fingerprints (including
MACCS,"®® PubChem fingerprint,'*® and SMILES fingerprint'®”)
and circular fingerprints (including ECFP,'*® FCFP,'*® MinHash
fingerprint,’®® Molprint2D,*® and Molprint3D**") discussed
above, topological fingerprints (including atom pair finger-
print,>®® atom pair fingerprint extended with atom properties
fingerprint,>*® and topological torsion fingerprint***) and shape-
based fingerprints (including rapid overlay of chemical
structures®®® and ultrafast shape recognition®®) are also widely
employed in molecular representation.

2.3.4. Graph. One molecule naturally forms a graph with
atoms as nodes (vertices) and bonds as edges, typically modeled
as an undirected graph structure in mathematics.?*”?%® In
formal terms, a molecule can be represented as G = (V, E),
where the vertex set V = {vy, v, ..., v,} commonly includes all
heavy-atom (non-hydrogen) atoms and the edge set E = {e;, e,,

.., em} describes the connectivity between atoms. The vertex
attribute matrix encodes physical and chemical features such
as atom type, hybridization state, and charge, and the edge
attribute matrix records bonding information such as bond
order, bond length, and aromaticity.>*°>'>

Early developments in chemical graph theory focused on the
molecular topological features. The 1940s saw the introduction

was
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213,214 which describes molecular structures

215,216

of the Wiener index,
through atomic path sums, followed by the Hosoya index,
which has been reported to correlate alkane boiling points with
bond matching patterns, and the Randié¢ index,*'” ' which is
suitable for measuring the extent of branching in the carbon-
atom skeletons of saturated hydrocarbons. These indices under-
pinned quantitative structure-property relationship (QSPR)
models, establishing foundational links between molecular
topology and macroscopic behavior.>*°%?

In computer implementations, the storage and manipulation of
molecular graphs rely on classical graph data structures.”****> The
adjacency matrix uses a 2D array A,, to precisely describe the
atomic connectivity, where A; represents the bond order between
atom 7 and atom j. On the other hand, the adjacency list records
each atomic neighboring node and bond attributes in a linked list
format, which enhances the storage efficiency for long-chain
molecules or sparse structures such as branched polymers.
Once a molecular graph is represented in a computer, graph
algorithms such as depth-first search,”**?*® breadth-first
search,>****' shortest path algorithms,”*>*** and subgraph
isomorphism algorithms?***>*” can be applied to address topo-
logical problems on the molecular graph. With DL technologies
emerging, the representation of molecular graphs has naturally
transitioned to the computational paradigm of GNNs, 2?3824
GNNs implement a message passing framework (e.g., MPNN)
to simulate the local interactions between atoms, enabling the
automatic extraction of underlying chemical patterns.”*' The
technical details and cutting-edge applications of GNNs will be
systematically discussed in subsequent sections.

2.3.5. Expert descriptors. The construction of expert
descriptors essentially involves translating domain knowledge
into quantifiable molecular features, with the design closely
aligned with the physical and chemical mechanisms underlying
the target property.>**>** Property-driven feature engineering is
particularly crucial in exploring battery molecules.>*®>*° The
construction process is usually guided by the intuition of
domain experts and typically relies on DFT calculations, MD
simulations, or the in-depth analysis of experimental character-
ization data. For instance, Allam et al.?*® established an ANN
utilizing descriptors including electron affinity, the highest
occupied molecular orbital (HOMO), LUMO, HOMO-LUMO
gap, and atom counts, to predict the redox potentials of organic
electrode molecules.

Since expert descriptors often encompass parameters with
different units and scales, it becomes essential to preprocess
the data and scale the data to a common range to ensure the
robustness of the model. Z-score normalization transforms
each feature into a distribution with a mean of 0 and a standard
deviation of 1, making it suitable for Gaussian-distributed
data.”®* The formula for Z-score normalization is

y_XTH

V= &

where x’ is the normalized value, x the original value, u the
mean of the feature, and ¢ the standard deviation of the
feature. On the other hand, min-max normalization linearly
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maps the features to the [0, 1] range, which is especially useful
for parameters with well-defined boundaries.*** The formula
for min-max normalization is
¥ = X — Xmin (2)
Xmax — ¥min
where Xx.,i, is the minimum value of the feature and x,.x the
maximum value of the feature.

2.3.6. Molecular coordinate. Molecular 3D coordinate
representation describes the geometric configuration and stereo-
chemical features of a molecule through the atomic positions in
Cartesian space, along with their connectivity.”>**>* Molecular
coordinate not only allows for the static depiction of bond
lengths, bond angles, and dihedral angles, but also enables the
dynamic capture of conformational changes through multiple
coordinate frames.>>>>°°

The commonly used 3D coordinate representation formats
are designed with distinct approaches, considering information
density and specific application scenarios. The XYZ format,>*’ as
the simplest representation method, records only atomic types
and their spatial coordinates, making it suitable for the rapid
storage and exchange of small-molecule conformations. How-
ever, the XYZ format lacks bond connectivity information and
requires external algorithms to reconstruct the molecular topol-
ogy. The Structure Data File format®®® further integrates multiple
molecular data blocks and custom physicochemical property
fields, supporting the efficient storage and retrieval of large
molecular libraries. The Protein Data Bank format®>**% includes
atomic coordinates, sequence information, crystallographic para-
meters, and experimental metadata, and is a core data carrier in
structural biology research.

2.3.7. Electronic structure. Electronic structure representa-
tion provides a mathematical formalization of the electronic
distribution characteristics within a molecular system, offering
input features for ML models that combine physical interpret-
ability with computational robustness. The Coulomb matrix*®*
is a classical descriptor for electron interactions. For a molecule
containing N atoms, the Coulomb matrix C € R¥*" has matrix
elements C; given by

0.5Z%4 ifi=],
Cj= 7 3
i ZZ i (3)
[Iri =

where Z; and Z; represent the atomic numbers (nuclear charge)
of atoms i and j, respectively, r; and t; the corresponding 3D
atomic coordinate vectors, and ||-|| the Euclidean norm. The
diagonal elements are empirically corrected by the 2.4™ power of
the atomic number Z. The off-diagonal elements describe the
Coulomb repulsive potential between pairs of atoms, therefore
encoding the electrostatic interaction network within the mole-
cule as a symmetric matrix. Despite the rotational and transla-
tional invariance of the Coulomb matrix, its numerical values are
highly sensitive to the atom indexing order.”®> Many methods
have been proposed to solve the problem, such as random and
sorted Coulomb matrices,**® employing the Wasserstein norm,
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rather than Euclidean or Manhattan norms,”** and many-body
tensor representations.*®> Furthermore, the concept of the Cou-
lomb matrix is further extended to describe broader interactions,
such as the Ewald sum matrix,>*® Sine matrix,”*® and Bag of
Bonds model.>*’

2.3.8. Molecular fragment. Molecular fragment decom-
poses molecules into chemically meaningful substructures,
such as functional groups, scaffolds, and reactive motifs, to
enable modular analysis and design.”®®*>”' These fragments
are typically generated through structure-based methods, in
which invariant core units such as scaffolds are identified by
analyzing atomic connectivity and bonding patterns.””>*”® For
instance, Degen et al.”’* proposed the breaking of retrosynthe-
tically interesting chemical substructures (BRICS), a rule-based
fragmentation method employing 16 retrosynthetically inspired
cleavage rules to partition molecules into chemically relevant
motifs. Diao et al.””” extended BRICS, introducing user-definable
parameters and graph-based decomposition to generate diverse
fragments. In addition, fragments can also be generated using
data-driven approaches, in which fragment vocabularies are
learned from chemical databases.?’®2’® For instance, Li
et al."*® developed SMILES pair encoding, a data-driven tokeni-
zation algorithm that augments atom-level encodings with
SMILES substrings learned from extensive chemical datasets.

Fragment-based methods remain limited in capturing global
molecular topology and rely on predefined fragment libraries,
constraining their adaptability to novel chemical spaces.?”® %'
Synergizing with LLMs offers transformative potential, as treat-
ing fragments as lexical units (tokens) enables LLMs to model
substructural relationships and generate synthetically feasible
molecules beyond existing libraries.>®*>7>%

2.3.9. Molecular image. Molecular image representation
encodes chemical structures into visual formats.***>°> Images
range from 2D line-angle drawings to multi-view 3D projections
and property-enhanced visualizations like electron density iso-
surfaces or electrostatic potential heatmaps.>**>® Such repre-
sentations enable convolutional neural networks (CNNs) to
implicitly learn spatial topology and stereochemical constraints
through end-to-end training.>**>°° However, molecular image
representations suffer from structural information loss during
rasterization (e.g., omitted stereochemical details or electronic
properties), resolution and viewpoint sensitivity, and non-
standardized rendering across studies, motivating careful data-
set curation and normalization protocols.**°~%

2.4. Molecular toolkits

A diverse ecosystem of software libraries has emerged to sup-
port both the generation of chemical structures and the deriva-
tion of molecular representations for modeling. Table 1
summarizes the commonly used chemical toolkits.

As discussed in previous parts, it is natural to use a graph to
represent molecular structures. Graph-theoretic libraries enable
rapid prototyping of custom molecular graph algorithms and
workflows. NetworkX provides a flexible framework for creating,
manipulating, and analyzing arbitrary graphs in Python, making
it suitable for encoding bond connectivity and for performing
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graph traversals or subgraph mining within chemical datasets.***
Similarly, the igraph library offers high-performance graph data
structures and algorithms, supporting both Python and R inter-
faces, and its C-core ensures scalability when enumerating large
combinatorial chemical spaces.*'® Beyond general-purpose graph
libraries, dedicated enumeration tools such as Surge have been
developed for exhaustive isomer and scaffold generation.>**
Surge implements efficient, rule-based algorithms to enumerate
structural isomers under valence and atom-typing constraints,
facilitating the systematic exploration of chemical space in virtual
screening campaigns.

Besides molecular structure generation, a variety of toolkits
enable the computation of molecular fingerprints and descrip-
tors. For instance, RDKit offers an extensive suite of fingerprint
algorithms, including MACCS and ECFP, as well as physico-
chemical descriptors (e.g., topological, electronic, and geo-
metric properties), and cheminformatics utilities for tasks
such as SMARTS-based substructure searching and reaction
enumeration.’®® Open Babel provides command-line and
library interfaces for interconverting molecular file formats
and computing a range of fingerprints.**® The chemistry devel-
opment kit (CDK), written in Java, implements many descriptor
calculators while exposing a modular application programming
interface (API) for integration into custom pipelines.**® In
addition, recent advances in neural networks have been inte-
grated into molecular modeling toolchains. DeepChem pro-
vides TensorFlow- and PyTorch-based implementations of
graph convolutional networks (GCNs), MPNNs, and Transfor-
mers for chemistry.**® Its pipelines enable end-to-end learning
of continuous molecular embeddings directly from graph or
SMILES inputs. Generative deep models, as supported in
DeepChem, facilitate the inverse design of molecules by learn-
ing latent spaces that capture meaningful chemical variations.

By integrating these chemical toolkits into coherent work-
flows, researchers are now equipped with turnkey solutions
that greatly simplify the application of AI in molecular science,
thereby empowering chemists to leverage Al-driven methods.

3. Al models

Al algorithms play a pivotal role in accelerating molecular dis-
covery by systematically identifying patterns from complex mole-
cular structures, thereby significantly enhancing the exploration of
new molecules. In this section, the foundational components of Al
methodologies are introduced, encompassing aspects of data
management, feature selection, model construction, performance
evaluation, and practical applications. Subsequently, both preva-
lent ML methods and advanced DL frameworks are discussed.
Special emphasis will also be placed on emerging LLMs, high-
lighting their innovative applications and illustrating representa-
tive case studies within molecular discovery.

3.1. Basic concepts of Al

The conceptual foundations of Al trace back to the mid-20™"
century, with pivotal milestones shaping its theoretical and
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practical evolution. The concept of Al can be traced back to the
philosophical question “Can machines think?” posed by Alan
Turing. In 1950, he laid the foundational groundwork for machine
intelligence by proposing the Turing test as a criterion to assess
whether machines could exhibit behavior indistinguishable from
that of humans.*®> Then, the term of artificial intelligence was
formally coined at the 1956 Dartmouth Conference, where John
McCarthy, Marvin Minsky, and other pioneers outlined a research
agenda to explore “how to make machines use language, form
abstractions and concepts, solve kinds of problems now reserved
for humans, and improve themselves”.**® The conference marked
the birth of AI as a distinct interdisciplinary field, integrating
computer science, mathematics, and cognitive science.

At its core, Al encompasses systems designed to perform tasks
requiring human-like intelligence, including reasoning, knowl-
edge representation, problem-solving, perception, and learning.
Early AI focused on symbolic approaches, relying on rule-based
systems and logic. Over time, the field shifted toward data-driven
methodologies. A transformative advancement emerged with ML,
a subfield where algorithms autonomously identify patterns in
data to make predictions or decisions without explicit program-
ming. The learning process involves training models on labeled
or unlabeled datasets, optimizing parameters to minimize errors
between predictions and ground truth, a mathematical frame-
work formalized by the concept of empirical risk minimization.
Supervised learning, unsupervised learning, and reinforcement
learning represent three primary paradigms, each addressing
distinct challenges such as regression and classification, cluster-
ing, and sequential decision-making.**’

The rise of DL in the 21° century revolutionized ML by
leveraging hierarchical ANNs inspired by biological neural sys-
tems. Unlike shallow models, deep neural networks employ
multiple layers to progressively extract high-level features from
raw data, enabling breakthroughs in computer vision (CV),>**34
natural language processing (NLP),>***** and robotics.****® In
CV, Aldriven systems now surpass human performance on
certain benchmarks in tasks such as image classification and
object detection,®”*° while in NLP, LLMs enable unprece-
dented capabilities in semantic understanding and context-aware
generation.>**>* Similarly, Al-powered robotics integrates per-
ception, decision-making, and control to achieve autonomous
operation in dynamic environments.>***> The development of
backpropagation algorithms®® and computational advance-
ments (e.g., graphics processing units, GPUs) catalyzed the
dominance of DL. Notably, the Transformer architecture,®>” with
its self-attention mechanisms, underpins LLMs like ChatGPT and
DeepSeek,**®2*? which demonstrate unprecedented capabilities
in text generation, reasoning, and domain-specific knowledge
synthesis. The evolution from symbolic to data-driven models
underscores a paradigm shift toward systems that learn repre-
sentations directly from data, which affords transformative
potential for molecular design.*®*3¢

3.2. The workflow of molecular AI methods

By leveraging Al, complex molecular interactions are modeled and
interpreted, the discovery of novel molecules is accelerated,'**3%+¢°
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Workflow
< Feature extraction < Regression
1D, 2D, 3D, 4D MAE, MSE, RMSE, R?
< Feature selection % Classification
Filter Accuracy, precision, recall
Wrapper % Clustering
Embedded Silhouette coefficient, Rand index
- Application
=
&=
- (o o o)
< Data collection < Machine learning < Prediction
Public database LR, DT, SVM Redox potential, dielectric constant
Text mining Ensemble learning Viscosity, ionic conductivity
Crowdsourcing PCA, t-SNE Melting, boiling, and flash points
< Data generation < Deep learning < Design
Experiment CNN, RNN Knowledge discovery
Graph theory GNN, Transformer High-throughput virtual screening
High-throughput calculation < Large language model Oriented molecular generation

ChatGPT, DeepSeek

Fig. 7 The workflow of molecular Al methods.

and the development of advanced battery systems is expedited,
such as electrolyte and electrode molecules with tailored
properties.*®”7° The integration of Al into molecular discovery
for battery research generally follows a structured workflow
comprising five interconnected stages (Fig. 7).

3.2.1. Data. The foundation of Al-driven molecular discov-
ery lies in robust data acquisition pathways, which encompass
both the curation of existing datasets and the generation of new
data through experimental or computational methods. Data
collection primarily involves harvesting information from
established repositories, scientific literature, and collaborative
platforms (Table 2). Widely utilized public experimental data-
bases for organic molecules include PubChem,'*®*”* National
Institute of Standards and Technology Chemistry WebBook,*”>
whereas commercial indexing resources such as SciFinder,*”?
which catalog molecular structures and physicochemical prop-
erties derived from empirical studies. Theoretical databases
include QM7°7*?7> and QM9,*”**”” which are generated using
DFT calculations,*”® and molecular structure libraries such as
GDB-11,°7°?% GDB-13,®' and GDB-17,*®*” which were con-
structed using graph-based algorithms. Efficient extraction
from these repositories often employs programmatic access
via APIs or automated web scraping tools, adhering to ethical
data usage protocols and applicable licensing/terms-of-service
constraints.*®*%% Beyond structured databases, unstructured
textual data from research articles and patents serve as critical
sources.’****° Text mining pipelines parse these documents
into structured datasets through NLP techniques, involving
tokenization, semantic feature extraction, and entity recogni-
tion to distill chemically relevant information.>*°% Crowd-
sourcing further augments data collection by distributing
annotation tasks to non-expert contributors, which has been
successfully demonstrated in large-scale projects like ImageNet.>**
However, applying similar crowdsourcing methods in molecular
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High-throughput experimentation

science requires stringent quality control to ensure chemical
accuracy.*> %

When existing datasets prove insufficient for specialized
research objectives, targeted data generation becomes impera-
tive. Wet-lab experimentation remains a cornerstone, particularly
through high-throughput platforms that automate synthesis and
characterization workflows.***** For instance, coupling these
systems with spectroscopic and electrochemical analysis enables
parallel testing of electrolyte formulations under controlled con-
ditions and significantly accelerates the acquisition of high-
quality experimental data.®>*****° For structural exploration,
mathematical frameworks rooted in graph theory offer systematic
approaches to molecular design.**"*** By representing atoms as
nodes and bonds as edges, algorithms for graph isomorphism
detection or substructure matching facilitate the combinatorial
generation of chemically plausible molecules, constrained by
valence rules and stability criteria.***>"**® Tools like the Surge
algorithm exemplify this approach, generating isomer libraries
while adhering to domain-specific constraints.>** Meanwhile,
computational chemistry bridges the gap between theoretical
predictions and experimental observables. DFT calculations and
MD simulations can predict critical electrolyte properties,
including frontier orbital energy levels, ionic conductivity, and
viscosity.5%449

3.2.2. Feature. A feature is a numeric representation of an
aspect of raw data.*>® Reasonably selecting features can facilitate
data understanding, mitigate the curse of dimensionality*>' to
improve prediction performance, and enhance overall model
performance.**? Firstly, features can be ranked according to their
correlation with the target variable through indicators such as the
Pearson correlation coefficient”® and mutual information
(MI1).*** Subsequently, feature evaluation uses indicators such
as tree-based feature importance and Shapley additive explana-
tions (SHAP) value® to assess feature importance from model
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outputs and improve model interpretability. In addition, feature
evaluation can also be conducted through ablation studies that
examine model performance after removing one or more
variable.*>*

From the methodological perspective, feature selection
includes filter, wrapper, embedded, and hybrid methods.**’
The filter methods rank features through univariate tests (e.g.,
analysis of variance and the F-test)**® or multivariate analysis
(e.g., minimum redundancy maximum relevance).*>® The meth-
ods are suitable for the initial screening of high-dimensional
data, but can neglect feature interactions and essential combi-
nations. The wrapper method uses either forward selection,
where variables are gradually incorporated into larger subsets,
or backward elimination, where one starts with all variables and
the least useful features are progressively removed, to ultimately
result in nested subsets of variables.””” Embedding feature
selection into the model training process, the embedded meth-
ods include the least absolute shrinkage and selection operator
(LASSO),*®° split gain in tree-based models, and attention
mechanisms.*®* The methods are practical, but interpretability
depends on the underlying model and the results are model-
dependent. The hybrid methods, such as Boruta,*®* balance
efficiency and accuracy by using filter methods during the initial
screening process and wrapper during the fine screening pro-
cess, but the complexity of parameter tuning is relatively high.
Other methods, such as compressed sensing (under sparsity
assumptions),*®**** and network pruning for neural networks
(where hidden units act as learned feature extractors) can also
effectively reduce the dimensionality of the problem.

Linear regression

Outputs
Outputs

Gaussian process
regression
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3.2.3. Model. AI methodologies are primarily categorized
by training data utilization into three core paradigms: supervised,
unsupervised, and reinforcement learning.**>*%” Supervised
learning employs labeled datasets to derive input-output map-
ping functions, exemplified by algorithms such as linear regres-
sion and SVMs.*®**° Unsupervised learning extracts latent
patterns from unlabeled data through clustering (e.g., k&-means)
or dimensionality reduction techniques like principal component
analysis (PCA).***® Reinforcement learning is a cross-
disciplinary domain that examines how an intelligent agent can
learn effective behaviors through interactions with its environ-
ment, with the objective of maximizing reward signals.*’**"°
Emerging variants, including semi-supervised”””™""® and self-
supervised*®®*¥! learning, further extend these foundational
frameworks. The commonly used ML and DL methods will be
discussed in Sections 3.3 and 3.4 (Fig. 8).

The efficacy of ML models hinges on rigorous evaluation
frameworks involving partitioned datasets. The training set facil-
itates parameter optimization, while the validation set monitors
generalization performance during hyperparameter tuning, pre-
venting premature decisions on model architecture.*®**8* The
test set, reserved exclusively for final evaluation, provides an
unbiased estimate of model performance on unseen data.*®>*%°
This tripartite division supports model generalization and miti-
gates the risk of overfitting, where models excessively adapt to
training data idiosyncrasies.*®”**® Conversely, insufficient model
complexity or inadequate training often induces underfitting
when models fail to capture fundamental data patterns.**® While
underfitting can be addressed by enhancing model capacity or

Support vector machine

Input's

Random forest

7
4 \

a0
o O O

Recurrent neural
network

Fig. 8 The typical ML and DL methods.
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extending training duration, overfitting presents an intrinsic chal-
lenge requiring systematic countermeasures.’®® Regularization
techniques, such as L2 penalty terms and dropout mechan-
isms,***™*** impose constraints on parameter magnitudes or net-
work connectivity, thereby discouraging over-specialization to
training noise. Central to model evaluation are the dual concepts
of robustness and generalization.*****® Robustness quantifies the
resilience of the model to perturbations in input data, ensuring
stable performance under varying noise levels or adversarial
conditions.’***°® Generalization, meanwhile, reflects the model’s
capacity to extrapolate learned patterns to unseen data, a property
directly influenced by the bias-variance tradeoff.****% Striking an
optimal balance between these competing factors remains a
cornerstone of ML theory, as overly simplistic models can overlook
critical data features (high bias), while excessively complex ones
may amplify stochastic variations (high variance).>**>%

3.2.4. Metrics

Regression performance metrics. For regression tasks, predic-
tion performance improves when the predicted values closely
match the true values. Several standard metrics quantitatively
evaluate regression performance.’>**>° For instance, the mean
absolute error (MAE) measures the average absolute difference
between predicted and true values.

1 m
MAE = =% |fi — yil (4)
mi=y

where m is the number of samples, f; the predicted value of the
i™ sample, and y; the true value of the /™ sample. The mean
squared error (MSE) calculates the average squared difference,
emphasizing large errors.

MSE =3 -, @

The root mean squared error (RMSE) represents the square
root of MSE, maintaining the original units.

RMSE — %;(ﬁ- ) (6)

1 m

1

The coefficient of determination (R*) indicates the propor-

tion of variance in the dependent variable explained by
the model.

i (fi =)
R=1-L @)

m

S (i—p)

i=1

where j is the mean of the true targets. Higher values of R
particularly those approaching 1, indicate that a greater pro-
portion of the variance in the response variable is accounted for
by the model. Note that R* can be negative on evaluation data if
the model underperforms the mean predictor. Lower MAE,
MSE, and RMSE values indicate better accuracy, while higher
R? values reflect stronger predictive capability.

Classification performance metrics. In binary classification
tasks, each sample is assigned one of two possible outcomes
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Table 3 Four possible combinations of predicted and true values

True value Predicted value Symbol

Positive Positive True positive (TP)

Positive Negative False negative (FN)
Negative Negative True negative (TN)
Negative Positive False positive (FP)

for both the predicted and true values.’®” As a result, four

distinct combinations of predicted and actual outcomes are
defined for each instance (Table 3). TP is the number of true
positive samples, FN the number of false negative samples, TN
the number of true negative samples, and FP the number of
false positive samples.

To quantitatively assess model performance in binary clas-
sification, several standard metrics are employed. Accuracy is
defined as the proportion of correctly classified samples (both
TPs and TNs) among all samples:

TP + TN
TP +FN + FP + TN

Accuracy = (8)

Precision is defined as the proportion of TP predictions among
all predicted positive samples:

TP

—_— 9
TP + FP ©)

Precision =

Recall is defined as the proportion of TP samples correctly
identified among all actual positive samples:
TP

= 10
Recall TP T EN (10)

Additionally, the F1 score is introduced to capture a balance
between Precision and Recall by representing their
harmonic mean:

2 x Precision x Recall

= 11
Fl Precision + Recall (11)

Furthermore, the receiver operating characteristic (ROC)
curve is widely employed as a comprehensive evaluation tool
for assessing classifier performance at different decision
thresholds.”®®*% The ROC curve is constructed by plotting
the false positive rate (FPR) on the horizontal axis and the true
positive rate (TPR) on the vertical axis. The definitions of FPR
and TPR are as follows:

FP
= 12
FPR FP + TN (12)
TP
= = 13
TPR = Recall TP L EN (13)

The area under the curve (AUC) is used as a quantitative
indicator, and its value corresponds to the area enclosed by the
ROC curve and the coordinate axes. AUC values range from 0 to
1. An AUC of 1 signifies a perfect classifier, while an AUC of 0.5
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indicates equivalence to random guessing. The mathematical
expression for AUC is presented as follows:

1
AUC = [ TPR dFPR (14)
JO

For multi-classification problems, log loss is employed to
quantify the discrepancy between predicted probabilities and
actual class labels.**°

> > qijlogpj (15)

i=1j=1

1
log(loss) = -
where m is the number of samples, ¢ the number of categories,
g; the indicator variable (g; = 1 when the i™ sample is of class j,
otherwise g; = 0) and p; the probability of predicting the i
sample as the j™ class (0 < p; < 1). Additionally, there are
other metrics, including confusion matrix,”*"*'*> macro-

513 >11 and weighted average.”"”

average,”~ micro-average,

Clustering performance metrics. For clustering tasks, overall
clustering quality is considered favorable when distances among
samples belonging to the same category remain small, while
distances among samples from different categories remain large.
The evaluation metrics for clustering problems are divided into
two types, depending on whether sample labels are provided.

When the samples are unlabeled, clustering metrics include the
Silhouette Coefficient**® and Davies-Bouldin index (DBI).>'**"” The
Silhouette Coefficient is calculated to assess both within-cluster
cohesion and between-cluster separation, and is defined as
follows:

bi*a,'

- max{a,-, b,} (16)

Si
where s; is the Silhouette Coefficient of data point i(—1 <
s; < 1), b; the minimum average dissimilarity between i and
all points in any other cluster, and a; the average dissimilarity
between i and the other points in the same cluster. A negative s;
indicates that the cluster assignment of data point i can reduce
cohesion and separation, whereas a value close to 1 suggests
that i is more suitably placed in the assigned cluster.

The Davies-Bouldin index is a metric used to evaluate the
quality of clustering algorithms by quantifying both the com-
pactness of individual clusters and the separation between
distinct clusters.

1 X Si +S;
ax 220

DBl =—) ma
N’:ZI J#i M’}f

(17)
where N is the number of clusters, S; the within-cluster scatter
of cluster 7, and M;; the distance between the centroids of
clusters i and j. A lower DBI value indicates a better clustering
performance.

When the samples are labeled, clustering metrics include
the Rand index (RI), MI, and purity.”'®*'° RI is employed as
an external validation metric for assessing the consistency
between a clustering result and a reference partition. Pairs of
samples are examined to determine whether both clustering

This journal is © The Royal Society of Chemistry 2025
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assignments and true labels coincide. The definition of RI is as
follows:

o+ p

=— 7 18
ao+p+y+0 (18)

where o is the number of pairs assigned to the same cluster and
sharing the same label,  the number of pairs assigned to
different clusters and having different labels, y the number of
pairs assigned to the same cluster but having different labels,
and 0 the number of pairs assigned to different clusters but
sharing the same labels. The value of RI ranges from 0 to 1,
where higher values indicate stronger agreement between the
clustering result and the reference partition.

MI measures the degree of information sharing between the
clustering results and the true labels through information
entropy. MI is defined as follows:

. - LS P(i,j)

I1(U;V) ,;/;1 P(i,j)log PoPv) (19)
where U is the set of ground-truth classes, V the set of clusters
produced by the clustering algorithm, P(i, j) is the probability
that a sample belongs to category i in U and cluster j in V, Py(i)
the probability of belonging to category i in U, and Py(j) the
probability of belonging to cluster j in V. A higher MI value
indicates a stronger alignment between the clustering result
and the reference partition.

Purity calculates the proportion of categories to which most
samples belong in each cluster. With Q = {w,,w,, ..., o} as a set
of clusters and K = {ky,ks, ..., k;} as a set of classes, the
definition of purity is as follows:

1
Purity(Q,K) = P > max|w; N k| (20)
i J

where m the total number of samples, |@; N k| is the number
of samples that are simultaneously in cluster w; and class k;.
Higher purity indicates a better match between the clustering
results and the true labels.

3.3. Molecular machine learning models

3.3.1. Linear regression. Linear regression is a founda-
tional supervised learning model that establishes a linear
relationship between an input feature matrix X (e.g:, molecular
descriptors) and a target vector y (e.g., physicochemical
properties). The model parameters are optimized by minimiz-
ing a loss function that quantifies the discrepancy between
predicted and observed values. The objective function is for-
mulated as:

min|[Xw — ¥ + A/ (w) (21)

where w is the parameter vector that parameterizes the linear
relationship between X and y, and ifiw) the regularization term,
which is added to prevent overfitting. When using L1 (LASSO)
regularization, f(w) = ||w||,= |wi| + |w2| + - - - + |[w,4|. When using
12 (Ridge) regularization, f(w) = ||w[3= wi2 + W2> + - + w/ .
The optimal parameter w,p can be obtained by calculating
the analytical solution w = (X"X)"'X"y when A = 0 and X"X
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is invertible. For Ridge regression, w = (X"X + AI)'X'y, whereas
LASSO has no closed-form solution and is typically solved via
coordinate descent or related algorithms. An alternative is to
use (stochastic) gradient descent, which updates w in each
iteration as follows:

WD = W) — Ty &(w)| (22)

w=w()

where w) is the weight parameter in number ¢ iteration, ; the
learning rate, V,, - |,_,» the gradient with respect to w = w(®,

W=wW
and &(w) the loss function, which is |[Xw — y[34+4f (w).

Utilizing nonlinear basis functions, linear regression can
possess a nonlinear hypothesis space. Commonly employed basis
functions encompass polynomial and radial basis functions.
Furthermore, generalized linear models®*° extend this framework
by linking the linear predictor Xw to the response variable
through a link function (e.g., logit for classification, exponential
for Poisson regression), broadening its applicability to diverse
chemical prediction tasks.

3.3.2. Gaussian process regression. Gaussian process regres-
sion (GPR) is a non-parametric modeling technique that employs
Gaussian process priors for the regression analysis of data. The
method can estimate hyperparameters, which control the form of
the Gaussian process, through either a maximum likelihood or
Bayesian approach. GPR can not only predict the mean of the
target value, but also quantify the predictive distribution (mean
and variance), enabling predictive/credible intervals for the
prediction.

In GPR, a covariance function is required, such as the
following covariance function:**!

1< R
S W (xf—xY?
=1

c<x<f>,x<-i>> = e +ap

(23)

d
+ar Y xOx) +vi6(i,j)
=1

where x?) is the ith training sample, v, the variable that
determines the overall scale of local correlations, d the dimen-
sionality of the input, w; the parameter that enables a different
distance measure for each input dimension, a, the bias term, a;
the variable controlling the scale of linear contributions to the
covariance, and v,6(i;) the noise term.

Based on the covariance function, the mean and variance of
a Gaussian distribution can be predicted using the following
equations:***

F(x) = K (XK't (24)
0;°(x) = C(x,x) — K"(x)K'k(x) (25)

where J(x) is the mean, k(x) the vector defined as (C(xx™"),.. .,
C(x,x"™))", K the covariance matrix for the training cases, with
elements K;; = C(xm,x(ﬂ), t the targets defined as t = (t(l), iy
&', and o,*(x) the variance.

3.3.3. Support vector machine. Initially developed for
addressing binary classification tasks, where samples are cate-
gorized into two groups (+1 or —1), the SVM constructs a
separating hyperplane that maximizes the geometric margin
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between the two classes. The hard-margin primal optimization
can be written as:

N
min 5{|wl; (26)

1<i<n

s.t. y(w'x; + b) > 1,

where w is the normal (parameter) vector of the hyperplane, b
the intercept, y; the label of the /™ sample point, which can take
values of 1 or —1, x; is the /™ input vector, and w'x; + b the
classification score for x;.

To handle nonlinearity, the kernel method maps inputs to a
higher-dimensional feature space via a feature map ¢(-) and
replaces inner products with a kernel function:***°23

k(x1,%2) = (x1)- (x2) (27)

where k(x1,X,) is the kernel function and ¢(-) the basis function.

Furthermore, the soft margin SVM was introduced, making
the model suitable for handling inseparable samples. The soft-
margin SVM introduced slack variables can be formulated as
follows:>>*

. 1 n
minslwl® +E3 & (28)
S.t. y,'(WTXl‘ + b) >1-— fl‘

(>0, 1<i<n

where ( the constant that governs the trade-off between margin
width and misclassification, and ¢; the nonnegative slack
variables. A training vector is misclassified if £; > 1 and is
within the margin if 0 < ¢; < 1.

For regression tasks, the corresponding technique is sup-
port vector regression (SVR) with an ¢-insensitive loss, which
introduces two nonnegative slack variables per sample to allow
deviations beyond the e-tube:**

. 1 ) n
- 4 o+ & 29
Jmin S{w; + e; (&+&) (29)

sit. (Wx;+D) —y; <e+&
Vi — (Wx;+b) < e+ &,
620, >01<i<n

where { balances flatness and violations, ¢ sets the tube width,
& and & the nonnegative slack variables.

3.3.4. Ensemble learning. Ensemble learning is employed
to enhance overall model performance through the integration
of diverse models. The ensemble learning framework can be
represented by the following equation:

hens (X) = combine (hDL (X), i (X), - oy (x)) (30)

where hens(X) is the ensemble model derived from sample x,
combine(-) the aggregation operator (e.g., averaging or majority
vote), and /i, (x) the base learner derived from the i™ subsample
extracted from the original sample D,. Base learners may be
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homogeneous (as is common in Bagging and Boosting) or
heterogeneous (as is typical in Stacking).

The performance advantage of ensemble learning depends
on the balance between accuracy and diversity among base
learners. Error-ambiguity decomposition is proposed to
describe the relationship:

E=E—A4 (31)

where E is the ensemble generalization error, E the average general-
ization error of the base learners, and A the average ambiguity
among the base learners. The ensemble model can significantly
outperform any single base learner when the base learners are both
highly accurate and sufficiently diverse in their predictions.

Pivotal methods, such as Bagging and Boosting, are included
in ensemble learning and combine outputs from several base
learners to strengthen predictive capability. In the Bagging,
bootstrap samples are drawn from the original dataset, and base
learners are trained on these subsamples. The learners are then
aggregated to reduce estimator variance.>”® As a representative
Bagging algorithm, the RF method constructs multiple decision
trees using both bootstrap samples and random feature subsets
at each split, and concludes with a majority vote for classification
or averaging for regression.’””**® Boosting is constructed by
sequentially adding weak learners and merging them into a
robust final model. Unlike Bagging, the Boosting method adjusts
sample weights according to the performance of the preceding
weak learner, which is required to perform marginally better than
random guessing. Prominent Boosting algorithms include Ada-
Boost, Gradient Boosting, and XGBoost.****°

Ensemble learning, as a model combination technique, also
incorporates averaging, voting, learning, and other approaches.
In the domain of DL, ensemble concepts have been broadly
applied in scenarios like model averaging and knowledge
distillation, forming a crucial technique for performance
improvements in complex tasks.’**3!

3.3.5. k-means clustering. As a frequently employed unsu-
pervised learning method, the k-means algorithm partitions
sample data into k clusters by initially designating k center
points {uV,.. ¥} and subsequently executing the following
two steps iteratively until convergence. Firstly, allocate each
training sample to the cluster i denoted by the closest center
point 1, Secondly, update each center point 1Y to the arith-
metic mean of all training samples within cluster i.>**

The application of the k-means algorithm necessitates
adherence to the following conditions. There are a few attri-
butes per instance to avoid expensive computation. A sufficient
number of samples must be available to mitigate the curse of
dimensionality.>**> Given that the feature scale can dynamically
impact clustering outcomes, it is imperative to preprocess the
data using the following feature normalization formula:

Xj = YUTJ#/ (32)
where %;; is the normalized value of feature j for sample i, y; the

. 1 m
mean of sample feature j, u; =—> x; (m represents the
L=
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number of samples), and g; the standard deviation of sample

m
— > (x —,uj)z. Finally, select a
mi—

feature j, defined as o; =

suitable positive integer k, as the model may overfit if & is too
large and underfit if k is too small.

However, the k-means method is subject to several
limitations.>®* It assumes roughly spherical, similarly sized
clusters and is sensitive to initialization and outliers. Perfor-
mance may degrade in high-dimensional spaces due to dis-
tance concentration, underscoring the importance of feature
engineering and dimensionality reduction. To address these
issues and adapt the method to various scenarios, new variants
and related approaches have been proposed, including k-
means++ initialization, mini-batch k-means, and k-medoids.”*?

3.3.6. Principal component analysis. PCA is widely recognized
as a fundamental technique for dimensionality reduction in data-
driven research. It projects high-dimensional data onto a lower-
dimensional subspace while preserving key information.
Principal components are formed by linearly recombining sample
features in a way that ensures mutual orthogonality, therefore
retaining a substantial amount of data variance with minimal
memory usage. The property is especially useful for mitigating the
effects of redundant features and reducing computational
requirements.>**

Two classical derivations exist, namely minimum recon-
struction error and maximum separability. The former is
adopted in this section. The columns of the data matrix are
centered to obtain X, and the sample covariance matrix is then
computed to capture relationships among the features:
S = X"X/(m — 1). Principal components can be determined
either through the eigendecomposition of S or through the
singular value decompositionrs of X. Both methods identify the
eigenvectors (or singular vectors) with the largest eigenvalues,
which correspond to directions of maximal variance in the
feature space. Mathematically, PCA can be formulated as an
optimization problem under the minimum-reconstruction-

error principle:**?

sit. d"d=1

where d* is the first principal component (optimal d), which
corresponds to the eigenvector associated with the maximum
eigenvalue of XX, ||-||7- the squared Frobenius norm, and X the
centered data matrix with m rows and n columns, where m
represents the number of samples and 7 represents the number
of features.

Subsequent principal components are determined by extract-
ing additional eigenvectors associated with the next largest
eigenvalues, ensuring orthogonality to previously identified
components. The number of principal components retained
can be decided based on variance thresholds or other criteria,
depending on the specific requirements of the analysis. PCA is
frequently applied for tasks such as data visualization, noise
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reduction, and feature selection, contributing to more efficient
learning and improved interpretability of complex datasets.
3.3.7. tDistributed stochastic neighbor embedding. t-Distributed
stochastic neighbor embedding (t-SNE) is employed to visualize
high-dimensional data by projecting them onto 2D or 3D
spaces. A student-t distribution with one degree of freedom is
employed to alleviate the crowding problem and to improve
optimization stability.>*>**® During t-SNE, it is essential to
calculate the symmetrized joint probabilities p; in the high-
dimensional space and the joint probabilities g; in the low-
dimensional space using the following formulations:

Djli + Pilj
v ]2m ] (34)
2 -1
(1 Il = 1)
qij = N (35)
S (14 e = wil3)-

k #

where m is the number of samples, p;; is the conditional
probability signifying the similarity between data points x;
and x;. pjj; can be calculated as

[E

e 207
P T e (36)
Z e 207
k#i

where g, is the standard deviation of the Gaussian centered on
data point x;. The t-SNE algorithm strives to minimize the
Kullback-Leibler divergence between the two joint probability
distributions (P and Q):

KL(P||0) = Y py lgf;— (37)
i i

In t-SNE, perplexity is regarded as a key hyperparameter that
controls the size of the local neighborhood. Low perplexity
values emphasize local structural details, whereas higher per-
plexity values preserve broader global relationships. A typical
recommended perplexity range is from 5 to 50. Subsequent
improved algorithms, such as uniform manifold approximation
and projection (UMAP), were proposed to enhance global struc-
ture preservation and computational efficiency by incorporating
topological constraints and more flexible similarity metrics.”*”

3.4. Molecular deep learning models

3.4.1. Artificial neural networks. ANNs are computational
models inspired by the structure and functionality of the human
brain, in which neurons are highly interconnected and capable
of rapidly transmitting information. In ANNs, artificial neurons
serve as the fundamental units, each comprising three primary
components, including weights, biases (also referred to as
thresholds), and activation functions. The computational opera-
tion of a single neuron is expressed as

y = neuron(x; w, b) = f(w'x + b) (38)

where y is the output of a neuron, x the input vector, b the bias
of a neuron, and f (-) the activation function. Common
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activation functions include the rectified linear unit (ReLU),
sigmoid, and hyperbolic tangent, each introducing nonlinearity
that enables the network to capture complex relationships.

The most basic ANN is the feedforward neural network
(FNN). It consists of an input layer, one or more hidden layers,
and an output layer. During computation, information is
propagated forward through the network, and the parameters
w and b are updated in the neurons in reverse through the
backpropagation algorithm.

The nonlinearity brought by activation functions and the
combination of different functions in ANN bring powerful fitting
ability to ANN. The universal approximation theorem states that if
a FNN has a linear output layer and at least one hidden layer with
activation functions, as long as a sufficient number of hidden
units are given to the network, it can approximate any Borel
measurable function from a finite-dimensional space to another
finite-dimensional space with arbitrary accuracy.>**>*° This foun-
dational property establishes the theoretical basis for the wide
applicability of ANNs across a broad range of learning tasks.

3.4.2. Convolutional neural networks. CNNs refer to a class
of neural networks that employ convolution operations rather
than general matrix multiplications in at least one layer.>*?
CNNGs are specifically designed to analyze data characterized by
a grid-like structure. A typical CNN architecture comprises
convolutional layers followed by pooling layers; pooling reduces
spatial dimensionality, whereas convolution may preserve or
change it depending on stride and padding, while preserving
key features.

Convolutional layers involve three primary principles: sparse
connectivity, parameter sharing, and translation equivariance of
the linear convolutional operator. Sparse connectivity ensures
that each output neuron is linked to only a localized area of the
input, reducing computational complexity. Parameter sharing
applies the same filters across different input regions, decreas-
ing memory usage. Translation equivariance preserves relative
spatial relationships, enabling similar patterns to be recognized
under shifts of the input; pooling then introduces partial
translation invariance.

During convolution, multiple learnable filters slide over the
input to produce feature maps, each containing linear responses
that are then passed through an activation function to inject
nonlinearity. When processing a 2D image I, a typical convolu-
tion at position (i) is expressed as

S(0.0) = (U K)(if) = S S Umn)Ke(i=m.j=n) (3

where K; is the 2D kernel. Pooling layers then aggregate local
statistical information from these feature maps to reduce their
size, introducing partial invariance to small spatial shifts in
the input.

Beyond image recognition, CNNs have demonstrated signifi-
cant potential in molecular studies by mapping chemical struc-
tures into grid-like representations. AtomNet was introduced as
the first structure-based deep CNN designed to predict the
bioactivity of small molecules.>** Chemception relies exclusively
on 2D images of molecules for chemical property predictions,
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matching the performance of expert-developed QSPR models.>*"
ImageMol harnesses large-scale molecular image datasets by
integrating an image-processing framework with extensive
chemical knowledge, thereby extracting fine-grained, pixel-level
features.>*” Further examples include DeepVSs,>** 2DConvNet,*®”
MolMapNet,>** and MoINexTR,*** addressing distinct applica-
tions of CNNs in molecular discovery.

3.4.3. Recurrent neural networks. RNNs exhibit strong
capabilities in handling sequential data, including applications
in text comprehension and language recognition. In RNN
architectures, the same weights are shared across time steps
(temporal parameter sharing), thereby reducing the number of
learnable parameters. The update equations can be described
as follows:

s, = f(Ws,_; + Ux, + b) (40)
0,=Vs,+c¢ (41)

where s, is the state at time ¢ (starting from the initial state s,),
f() the activation function, W, U, V the parameter matrices, x,
the input at time ¢, b, ¢ the parameters, o, the output at time ¢,
and the standardized probability output §; = softmax(o,).

There are two important variants of RNN. The long short-
term memory (LSTM) network augments the recurrent unit
with gates (input, forget, and output) and a cell state, which
mitigates vanishing gradients and enables long-range depen-
dency modeling.***>*>*> Bidirectional RNN achieves the out-
put of predicted values based on the entire input sequence by
transmitting information in the forward direction from the
starting point and in the backward direction from the end of
the sequence.>*¢~>5

In molecular representation, string formats such as SMILES
are amenable to modeling through RNNs. BIMODAL is intro-
duced as a bidirectional generative RNN based on SMILES,
enabling the generation of novel molecules from scratch using
string representations.’*® The cRNN method is further applied
to incorporate chemical conditions, allowing molecules to be
generated that satisfy specified requirements.>® Additional
RNN-based approaches, including LSTM,>*" MolecularRNN,>?
QBMG,>** M-RNN,”** and ChemTSv2,>® have also been devel-
oped for applications in molecular design.

3.4.4. Graph neural networks. A graph consists of nodes
(vertices) and edges. Small molecules can therefore be modeled
as graphs by representing atoms as nodes and chemical bonds as
edges.>® Early methods, such as DeepWalk>>” and Node2vec,>*®
learn static embeddings for each node. DeepWalk estimates the
similarity between node u and v using co-occurrence probabilities
from truncated random-walk sequences.**” Node2vec trades off
between local and global views of the network by introducing the
return parameter and the in-out parameter respectively.>>® The
objective function used in the above-mentioned Node2vec work is
as follows:>*®

DR of (ni):f (u)

max og s

E u€V n;eNy(u) XI:/ e/(‘)f( ) (42)
ve
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where f{-) is the mapping function from nodes to feature repre-
sentations, u € V the source nodes that belong to the vertices
V, n; € Ny(u) the neighborhood nodes that belong to Nj(u),
which is a network neighborhood of node u generated through
a neighborhood sampling strategy S, and Y ¢/®)/® the per-
node partition function. <

In contrast, GNNs learn node embeddings through end-to-
end neural message passing. GNN architectures, specifically
GCN,> GraphSAGE,*® and graph attention networks,>®" were
introduced for applications in molecular modeling. Then, the
MPNN was introduced to unify various graph learning
approaches under a generalized framework.”®® The forward pass
has two phases, a message passing phase and a readout phase.
During the message passing phase, hidden states h{? at each
node v are iteratively updated through messages m{/*?) derived
from neighboring nodes. Formally, the phase is governed by two
learnable functions: the message function M, and the vertex
update function U, The message from neighboring nodes is
computed as

m/ ™ = 5 M,(h{", b, e,,) (43)
weN (v)

where m{*? is the message at node v at time step ¢ + 1, w € N(v)
the neighborhood nodes that belong to N(v), which denotes the
neighbors of v in graph G, M, the message function, h{) the
hidden state of node v at time step ¢, th,) the hidden state of
neighborhood node w at time step ¢, and e, the edge features
between node v and neighborhood node w. The new hidden state
of node v is then updated by

h1()z+1) — Ut(hsf), m](}t+1)) (44)

where U, is the vertex update function. After T message passing
steps, the readout phase generates a feature vector for the
entire graph, by applying a permutation-invariant readout
function R to the set of node representations.

y=R({n" ]y e G}) (45)

where § is the feature function for the whole graph G, R the
readout function, and hgt) the hidden state of node v at the final
time step 7.

Many GNNs treat molecules as 2D graphs, overlooking 3D
distances and angles that underpin molecular conformations.
Simply appending coordinates often renders models sensitive to
translations and rotations. To address the problem, GNNs with
3D geometric information have emerged, ensuring consistent
outputs despite rigid transformations.>®® For instance, the deep
tensor neural network pioneered distance-based message
passing,®®* and SchNet extended the concept with continuous
filters capturing local atomic correlations.>®> Later models such
as HIP-NN,’*® PhysNet,”®” DimeNet,**® DimeNet++,>*° OrbNet,>”°
OrbNet-Equi,””* SphereNet,>”> ComENet,””* and GeoGNN'** inte-
grate angular terms or orbital information. Additionally, SE(3)-
equivariant molecular networks have been widely applied to
molecular modeling due to their inherent advantages in preser-
ving geometric symmetries, enabling efficient 3D structural
learning, and maintaining consistent physical representations
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under rotational/translational transformations. For example, tensor
field neural networks are designed so that each layer remains locally
equivariant to 3D rotations, translations, and permutations of
points.’”* Because rotation equivariance is embedded in the archi-
tecture, the requirement for data augmentation is reduced, and
features can be identified in arbitrary orientations. The polarizable
atom interaction neural network (PAINN) has been proposed as an
equivariant network and has demonstrated superior performance
compared to invariant networks.””® Vector-valued features are
introduced in the embedding stage of PAINN, complementing
scalar descriptors and providing a richer representation that
captures complex intramolecular interactions. Furthermore,
representative examples include Cormorant,®’® L0/L1Net,>””
EGNN,*”®  GemNet,””® ClofNet,*®® NequlP,'*®* MACE,**!
LEFTNet,**? SEGNO,’®* and DEGNN.*%*

3.4.5. Transformer. The Transformer has become the pre-
dominant neural architecture in DL, owing to the attention-
based design and parallelizable computations. An encoder-
decoder stack is built from identical layers that combine
multi-head self-attention with position-wise FNNs, with each
sublayer wrapped by residual connections and layer normal-
ization for stable optimization.*®*

The core operation is scaled dot-product attention, defined
as follows:

Attention(Q, K, V) = softmax (QKT>V (46)
o Vi

where Q is the query matrix, K the key matrix, V the value
matrix, di the dimension of keys, /dx the scaling factor, which
is added to improve numerical stability, and softmax(:) the
softmax function.

To capture diverse relational patterns, attention heads are
evaluated in parallel and concatenated:

MultiHead(Q, K, V) = Concat(head,, ..., head,)W® (47)

head; = Attention(QW,?, KW,™, vyw,) (48)

where W, @, W™ and WY are learned linear projec-
tions for queries, keys, and values, and W the output
projection that maps the concatenation back to the model
dimension.

Because attention alone lacks positional awareness, a posi-
tion vector is added to each token embedding vector before the
first layer, either by fixed sinusoidal functions or by learned
parameters, enabling the network to distinguish the sequence
order without recurrence. Through these components, the
Transformer attains efficient global context modelling, high
scalability, and state-of-the-art performance across language,
vision, and scientific sequence tasks.>®

The Transformer architecture, due to its powerful attention
mechanism and flexibility, has emerged as one of the most
prominent DL models in molecular modeling. Specifically, the
SE(3)-Transformer utilizes a specialized self-attention mechanism
designed for three-dimensional point clouds and graphs.”®® Equiv-
ariance under rotations and translations is ensured by constraining
the attention weights to remain invariant to such transformations.
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Consequently, physical consistency is preserved throughout mole-
cular modeling tasks. Uni-Mol further extends Transformer-based
molecular modeling by offering a universal 3D molecular repre-
sentation learning framework."*® It leverages an SE(3)-Transformer
backbone pretrained on large-scale datasets of molecular confor-
mations and protein pockets. Uni-Mol incorporates comprehen-
sive 3D information directly into the representations, enabling
highly accurate molecular property predictions and 3D spatial
tasks. Building on these successes, several other Transformer-
based architectures have been proposed, including Molecular
Transformer,®®” LieTransformer,’®® 3D-Transformer,’®® Trans-
former-M,*°° Graphormer,>*"**> TorchMD-Net,>** TorchMD-Net
2.0,°°* MolGPT,>®® Uni-Mol+,”*® Uni-Mol2,’®” and BAMBOO.**®

3.5. Large language models and prospects

3.5.1. Concepts and scaling laws. LLMs are deep neural
networks characterized by transformer-based architectures
trained on extensive text corpora, enabling human-like lan-
guage understanding and generation through self-supervised
learning.>*® The term large denotes two critical dimensions:
(1) massive-scale training data, typically spanning hundreds of
billions to trillions of tokens (e.g., DeepSeek-V3 trained on 14.8
trillion tokens), and (2) enormous parameter counts, often
exceeding billions to hundreds of billions (e.g., DeepSeek-V3
with 671 billion total parameters). These scales synergistically
empower LLMs to capture intricate linguistic patterns, domain-
specific knowledge, and cross-task generalization.

Scaling laws mathematically characterize the relationship
between model performance and three fundamental variables:
model parameter count (N), training data size (D), and compu-
tational resources (C). These laws are typically expressed via
empirical power-law formulations that quantify how the loss
diminishes as these factors scale. A generalized formulation
can be represented as

A B G
Nei + De + ca

L(N,D,C) = (49)
where 4, B, G, ey, e,, and e; are empirically derived constants.
The framework posits that increasing N, D, or C reduces loss,
but their contributions are non-linear and interdependent,
necessitating strategic trade-offs.

Kaplan et al.°®® (OpenAl team) first proposed scaling laws,
prioritizing model parameters as the primary driver of perfor-
mance. Building on this, Hoffmann et al.°*® (Google DeepMind
team) demonstrated that balanced model-data scaling opti-
mizes computational efficiency, shifting focus from pure
model-centric approaches. Further advancing this trajectory,
Bi et al.®°' (DeepSeek Al team) revealed that high-quality data
reorient optimal scaling toward model expansion over data
volume while formalizing hyperparameter-compute power-law
relationships. Collectively, these works chart the shift in scaling
strategies from parameter-centric to holistic approaches balan-
cing data quality, computing, and architecture.

3.5.2. Basic technique. The advancement of LLMs has been
largely enabled by the Transformer architecture, a neural
framework employing self-attention to process sequential data
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in parallel.**> This innovation addressed the computational ineffi-
ciencies of prior architectures, enabling scalable training on
massive text corpora. Early models like BERT®** and GPT**
demonstrated the Transformer’s versatility: BERT utilized bidirec-
tional context for masked token prediction, while GPT adopted
autoregressive generation to model text sequences. These models
established the pre-training paradigm, where self-supervised learn-
ing on unlabeled text, via objectives like next-token prediction
(GPT) or masked token recovery (BERT), captured broad linguistic
patterns, forming the basis for transfer learning.

To adapt pre-trained models to downstream tasks, fine-
tuning emerged as a standard approach, updating model para-
meters using task-specific labeled data. However, its computa-
tional cost and overfitting risks prompted innovations like
instruction tuning, which fine-tunes models on diverse tasks
formatted with natural language instructions.®® Instruction tun-
ing has been shown to enhanced zero-shot generalization by by
exposing models to diverse instruction formats, and reinforce-
ment learning from human feedback further aligns model beha-
vior with human preferences. Concurrently, supervised fine-
tuning refined outputs using human-annotated data, aligning
responses with safety or stylistic guidelines. These methods
shifted focus from brute-force scaling to efficient specialization,
balancing generalization with task-specific precision.

During inference, the phase where models generate outputs
without weight updates, techniques like prompt engineering
optimized input design. By embedding task descriptions into
prompts, models inferred desired behaviors without retraining.
This approach later evolved into chain-of-thought prompting,
which elicited step-by-step reasoning to improve complex
problem-solving.®°® Later, retrieval-augmented generation inte-
grated external knowledge retrieval during inference, ground-
ing outputs in factual data to mitigate hallucinations.®®’
Collectively, these advancements prioritized efficiency and con-
trollability, reflecting a trajectory from architectural innovation
to practical deployment, where scalability, adaptability, and
precision are systematically balanced.
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3.5.3. Representative models. The rapid advancement of
LLMs such as GPT-40,°%® DeepSeek-V3,359 Claude 3.5,°°° Llama
3.1,°1%%1 and Qwen 2.5°'* has reshaped Al research and appli-
cation landscapes (Fig. 9). OpenAr’s foundational contributions
began with transformer-based GPT models. GPT-2, released in
2019, had 1.5 billion parameters, whereas GPT-3, introduced in
2020, dramatically expanded to 175 billion parameters. In 2022,
OpenAlI released ChatGPT, a groundbreaking conversational Al
that quickly gained global attention due to its remarkable
conversational capabilities. Then, OpenAl introduced GPT-40 in
2024,°°% a flagship model enabling real-time multimodal rea-
soning across audio, vision, and text. The o1 series emphasizes
test-time compute and deliberate reasoning, achieving strong
results in mathematics, coding, and scientific tasks.®"?

While GPT-series models have demonstrated exceptional
performance, their proprietary nature partially impedes scientific
research. In contrast, DeepSeek Al, a representative open-source
LLM established in 2023, achieves a significant balance between
computational efficiency and model performance. The initiative
pioneered the development of its mixture-of-experts architecture,
which employs sparse activation mechanisms to minimize energy
consumption. The 2024 DeepSeek-V2 model (236 billion para-
meters, 21 billion active) introduced multi-head latent attention
for optimized inference.®* Later, DeepSeek-V3 achieved break-
throughs as a leading open-source model (671 billion parameters,
37 billion active/token), outperforming other open-source models
and matching leading closed-source reasoning performance with
only 2.788 million H800 GPU training hours.** In 2025,
DeepSeek-R1 integrated self-verification and extended chain-of-
thought, attaining parity with advanced models like OpenAI-o1-
1217 in mathematical precision.®*®

3.5.4. Prospects in battery research. LLMs exhibit consid-
erable potential for advancing battery molecule discovery,
particularly when employed in text mining to address the
challenge of accelerating knowledge extraction from the expo-
nentially growing body of scientific literature. For instance,
Zheng et al®'® demonstrated the effectiveness of prompt

Fig. 9 The evolution of LLMs.5%° The models have been updated since July 2025. Reproduced with permission from ref. 599. Copyright 2025 The

Authors.
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engineering in guiding ChatGPT to automatically extract metal-
organic framework (MOF) synthesis conditions from diverse
publication formats and styles, resulting in 26257 synthesis
parameters linked to approximately 800 MOFs. Similarly, Na
et al.®"” applied an LLM-driven approach for sodium-ion battery
layered cathode materials, rapidly extracting 945 data points
pertaining to composition, crystallinity, operating voltage, and
electrode composition from 312 publications, with each paper
processed in around 20 seconds. Further illustrating the effi-
ciency of LLM-based systems, Zhao et al.®'® developed Batter-
yGPT, showcasing a platform capable of rapid literature
summarization, knowledge retrieval, and question answering,
thereby highlighting the powerful capacity of LLMs for infor-
mation synthesis and insight generation.

While LLMs excel in text-related tasks, handling graph-
structured data remains challenging. To bridge this gap, Wang
et al®"® introduced Graph2Token, which aligns graph tokens
with LLM tokens by mapping graph elements to the model’s
vocabulary, thereby improving molecular prediction. Zheng
et al®'® proposed LLMA4SD, which leverages LLMs to drive
scientific discovery in molecular property prediction. By mining
established information from the literature, such as molecular
weight as a key indicator for solubility, and identifying patterns
like the tendency of halogen-containing molecules to penetrate
the blood-brain barrier, LLM4SD converts these insights into
interpretable feature vectors. When integrated with interpretable
models such as RFs, these features enable LLM4SD to surpass
state-of-the-art benchmarks in various property prediction tasks.

Beyond text mining and property prediction, LLMs are
beginning to function as AI chemists. Coscientist,**° powered
by GPT-4, exemplifies this trend by autonomously designing,
planning, and executing complex experimental workflows
through an integrated platform that includes internet and
document searches, code execution, and experimental automa-
tion. Its capabilities were demonstrated by successfully optimiz-
ing several research tasks, including a palladium-catalyzed cross-
coupling reaction, illustrating its advanced capacity for (semi)-
autonomous experimental design and execution. Song et al.®*'
reported a robot AI chemist underpinned by ChemAgents, a
hierarchical multi-agent system based on the onboard Llama-
3.1-70B LLM, capable of performing intricate multi-step experi-
ments with minimal human intervention. Governed by a task
manager agent that interacts with human researchers and coor-
dinates four role-specific agents (literature reader, experiment
designer, computation executor, and robot operator), this system
effectively navigated a vast five-component chemical space to
identify a high-performance high-entropy metal-organic catalyst
for the oxygen evolution reaction.

4. Applications to molecular property
prediction in rechargeable batteries

Following the comprehensive introduction of molecular represen-
tations and Al methods, accurately predicting electrolyte properties
becomes essential. Although experimental characterization and
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classical computational simulations provide property data, these
approaches are expensive, time-consuming, or lack sufficient
accuracy for HTVS. In contrast, Al-based prediction methods have
been widely adopted to overcome these challenges.

In this section, several key molecular properties relevant to
rechargeable batteries are systematically discussed. Initially,
redox potentials of electrolyte and organic electrode molecules
are introduced. Subsequently, critical factors influencing mole-
cular interactions, such as dielectric constants and donor
numbers (DNs), are analyzed. Then, important characteristics
affecting ionic transport, particularly viscosity and ionic con-
ductivity, are presented. Finally, other fundamental physico-
chemical properties, including melting points, boiling points,
and flash points, are addressed. Representative studies and key
advancements in molecular property prediction using Al
models will also be highlighted.

4.1. Redox potential

The redox potential is a fundamental thermodynamic property
that describes electrochemical stability. Specifically, the redox
potential of organic molecules plays an essential role in design-
ing battery electrolytes and organic electrodes. The redox
potential of electrolyte molecules is a critical determinant of
battery performance. For instance, increasing and reducing the
redox potential of catholytes and anolytes, respectively, is bene-
ficial for increasing the energy density of redox flow batteries. To
enable rapid screening of candidate molecules, Jia et al®*?
proposed a graph-based ML approach for predicting redox
potentials. GNN models were developed to correlate molecular
properties and descriptors, and an MAE of 5.6 and 7.2 kcal mol *
was achieved for predicting reduction and oxidation potentials,
respectively. To narrow the gap with DFT-based methods,
Hruska et al.°** proposed ML models to correct computational
errors in redox potential calculations obtained through implicit
and explicit solvent models (Fig. 10a). Physically inspired
features were employed, including solute molecular properties
and solvent-related features. After applying the ML correction,
the MAE for implicit and explicit solvent model data was reduced
from 0.76 to 0.44 V and from 0.64 to below 0.24 V, respectively.
To accelerate traditional simulations, an MLMD-based method
was devised by Wang et al.,°** enabling automated prediction of
redox potentials with high accuracy.®*>**® Concurrent learning
workflows were combined with free energy calculation techni-
ques to construct ML potentials for efficient and precise free
energy estimation. Nanosecond-scale simulations with first-
principles accuracy were performed using MLMD, and an auto-
mated workflow incorporating the hybrid HSE06 functional was
employed for potential development. An MAE of 0.33 V was
achieved in redox potential predictions, marking a significant
step toward high-throughput computational screening of novel
electrolytes.

To better align with experimental measurements, Gao et al.**°
constructed an experimental database encompassing over 500
redox potentials of organic redox-active molecules measured in
aqueous and/or organic solvents (Fig. 10b). Data were collected
from hundreds of published papers, recorded molecular structures
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Fig. 10 The prediction of redox potentials for electrolyte and organic electrode molecules. (a) The ML-corrected solvent modeling using implicit/
explicit solvent features to refine redox potential calculations.®®® Reproduced with permission from ref. 623. Copyright 2022 American Chemical Society.
(b) The multi-stage ML workflow for predicting redox-active molecule performance in organic redox flow batteries.®?° Reproduced with permission from
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using SMILES, and computed molecular descriptors using RDKit.
To control for potential influences from solvent types and solution
pH values, the dataset was divided into three subsets (aqueous,
alkaline, and organic solvents), with resulting model performances
on test sets of 0.053, 0.085, and 0.118 V, respectively. These
methods provide valuable tools for the rapid exploration of high-
performance redox flow batteries.

In Li battery systems, the decomposition of electrolytes at
the electrode surface results in significant capacity loss and
deteriorated cycling performance. Ideally, the decomposition
can be suppressed by forming a stable solid electrolyte inter-
phase (SEI) on the electrode surface.*” The redox potential is
among the fundamental properties of electrolyte film-forming
additives, as additives usually preferentially participate in
interfacial redox reactions compared to the bulk electrolyte,
thus protecting the electrolyte from further consumption and
mitigating capacity degradation. Okamoto et al.'** computa-
tionally investigated the redox potentials of 149 LIB electrolyte
additives using ab initio calculations. Twenty-two molecular

This journal is © The Royal Society of Chemistry 2025

descriptors were constructed based on the constituent ele-
ments and coordination numbers within the molecules. By
employing Gaussian kernel ridge regression and gradient boost-
ing regression (GBR), the state-of-the-art model achieved predic-
tive performance of R*> = 0.985 and 0.643 for reduction and
oxidation potentials, respectively. Feature analysis revealed that
key descriptors of redox potential were associated with the
amplitude of frontier orbital eigenstates, providing valuable
guidance for molecular screening. Moreover, to explicitly quantify
statistical relationships between molecular structural features
and redox potentials, Zhang et al.®** described a GPR model to
predict redox potentials based solely on electrolyte additive
molecular structures. The model achieved prediction MAEs of
0.05 and 0.10 V for reduction and oxidation potentials, respec-
tively. This model explicitly demonstrated numerical correlations
between molecular descriptors and redox potentials.

Organic batteries have recently experienced continuous
growth due to their potential advantages, including high capacity,
abundant materials, low cost, and environmental sustainability.
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The redox properties of organic electrode molecules directly
influence the energy density of battery systems. Most organic
cathodes exhibit a trade-off between specific capacity and operat-
ing voltage, with low redox potentials resulting in insufficient
battery voltage for achieving high energy density.®** To facilitate
rapid screening of promising candidates, Allam et al®°
employed feature engineering techniques including LASSO fea-
ture selection, relative contribution analysis, and recursive fea-
ture elimination to train three learning models: ANN, GBR, and
kernel ridge regression (Fig. 10c). These models demonstrated
excellent performance in predicting redox potentials for organic
molecules outside the original dataset, with electron affinity and
number of Li atoms identified as the most critical determinants
of redox potential. The methodology provides valuable insights
for HTVS processes. Furthermore, Xu et al®®*' integrated ML
predictions with an autonomous experimental platform for
material synthesis and reaction monitoring, successfully devel-
oping high-performance organic cathode materials (Fig. 10d). An
experimental dataset of 600 entries was compiled, and SMILES
representations of molecular structures were converted into
MACCS molecular fingerprints to serve as model inputs. A ternary
classification framework was implemented using voltage thresh-
olds of 2.5 and 3.5 V, where materials exceeding 3.5 V were
deemed optimal. The model achieved an accuracy of 91.6% on
the test datasets. SHAP analysis revealed structural preferences
for specific functional groups, particularly nitrogen atoms, ben-
zene rings, and carbazole moieties. Guided by computational
insights and chemical principles, polymer p-BCz-PH was synthe-
sized through the autonomous platform. The cathode material
demonstrated enhanced discharge voltages of 4.5 and 4.8 V vs. Li/
Li", while maintaining high specific capacity throughout charge-
discharge cycles.

It is worth noting that frontier molecular orbitals, i.e., the
LUMO and HOMO, are commonly employed for high-
throughput computational screening due to their easy accessi-
bility by DFT calculations. However, caution is necessary when
interpreting LUMO and HOMO energy levels in relation to
redox potentials. The former parameters are derived from
approximate electronic structure theories when investigating
isolated molecular species, and do not explicitly represent the
actual participants in redox reactions. In contrast, the redox
potential directly correlates with the Gibbs free energy differ-
ence between reactants and products in electrochemical
processes.®>> While insights into electrolyte stability are pro-
vided by both HOMO/LUMO energy levels and redox potentials
from different theoretical perspectives, these are constituted as
distinct physicochemical descriptors without a strict quantita-
tive correspondence.

4.2. Dielectric constant and donor number

The dielectric constant, originating from physics as a measure
of the dielectric properties of materials, has attracted signifi-
cant attention in solution chemistry due to its critical role in
modulating microscopic interactions and solvation structures.
The dielectric constant is widely recognized as an important
parameter for solvent-mediated regulation of interactions.
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Specifically, it influences electrostatic interactions among ions,
solvents, and dissolved species. For instance, the solubility of
salts in solvents is governed by the competition between
cation-anion interactions within solid salts and ion-solvent
interactions within the solution.

To develop QSPR descriptors correlating with dielectric
constants, Cocchi et al.**® established QSPR models for organic
solvent dielectric constants using multiple linear regression
analysis and multivariate partial least squares (R* = 0.956).
Schweitzer et al.®®” employed ANN modeling on a diverse
dataset of 497 compounds with varying dielectric constants,
achieving a test set RMSE of 2.33. Subsequent development of
specialized models for feature subsets reduced the test error to
1.85.9%8 For electrolyte mixture systems, Yao et al.®*® predicted
dielectric constants at different concentrations using ANN
models (Fig. 11a). Ethylene carbonate (EC) content and salt
percentage were employed as inputs, while the natural loga-
rithm of dielectric constant was used as the output. After 20 000
training steps, the ANN model demonstrated excellent predic-
tive performance with an MSE of approximately 0.0088. Based
on the ANN model, 2D maps illustrating dielectric constant
variations with EC percentage and salt concentration in EC/
dimethyl carbonate (DMC)/lithiumbis(fluorosulfonyl)imide (LiFSI)
electrolytes were generated, showing close agreement with MD
simulations. These results demonstrate the remarkable capabil-
ity of ML models in predicting dielectric constants for complex
electrolytes containing multiple solvents and salts.

In polymer-based solid-electrolyte systems, a high dielectric
constant is expected to facilitate the dissociation of Li salts,
thereby significantly enhancing the ionic conductivity of poly-
mer solid electrolytes.®”® From the viewpoint of molecular
representation, polymers can be approximated as assemblies
of small molecules. Accordingly, common molecular represen-
tation methods have been extended to polymer systems, where
strings, molecular descriptors, and molecular fingerprints have
been used for characterization.®**"%*® Liang et al.®*° reported a
method for representing polymers at the molecular level and
predicting their dielectric constants (Fig. 11b). Polymers were
treated as 1D chains, and SMILES was employed to clearly
encode specific main-chain and side-chain features, therefore
labelling each polymer in the database. A total of 29 features
were extracted, encompassing length, quantity, and particular
functional groups. RF models were then utilized for ML train-
ing, and an autonomous intelligent cloud laboratory was
employed to synthesize the predicted polymers.

The limitations of dielectric constant in comprehensively
describing Li salt solubility and dissociation characteristics
have motivated the development of more holistic descriptors
for advanced electrolyte design.®*”**® The DN was initially intro-
duced by Gutmann to characterize the basicity of a solvent and its
tendency to donate electrons to an electron acceptor. In Li metal
batteries (LMBs), DN has been applied to describe the electron-
donating capability of solvents or anions, influencing battery
performance primarily through Li salt solubility and the regula-
tion of Li solvation structures. In localized high-concentration
electrolyte systems, Chen et al.%*° established a DN-based design
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Copyright 2025 American Chemical Society.

criterion requiring primary solvents with DN > 10 paired with
diluents possessing DN < 10. For S cathode systems, high-DN
solvents enhance Li polysulfide solubility and stabilize S;*~
radicals, thereby improving S conversion kinetics.®*°"*** Extend-
ing this concept to Zn-ion batteries, Cao et al.®** adopted DN as
a metric for molecular-cation affinity evaluation, employing
high-DN dimethyl sulfoxide solvent additives to suppress Zn
dendrite formation and water decomposition at anode/electro-
lyte interfaces.

To enable accurate DN prediction, Hu et al.®*" developed ML
models using four algorithms, including CatBoost, GBR, RF,
and ridge regression, for simultaneous DN and acceptor num-
ber (AN) prediction from molecular descriptors (Fig. 11c). The
CatBoost-based models demonstrated superior performance

This journal is © The Royal Society of Chemistry 2025

with test set R* values of 0.86 (DN) and 0.96 (AN). Addressing
Zn-ion battery additive screening, Luo et al®*® created an
integrated ML model predicting DN values from molecular
fingerprints (Fig. 11d). Experimental validation revealed a direct
correlation between higher additive DN values and extended Zn
anode calendar life. Isopropanol additives with DN of 36 exhib-
ited strong electrochemical performance in various Zn-based
batteries, achieving 1500-hour calendar life, 99% CE over 450
cycles, and superior capacity retention.

To elucidate molecular interactions and solvation struc-
tures, nuclear magnetic resonance (NMR) spectroscopy is fre-
quently employed. NMR spectroscopy is a nondestructive,
atom-specific technique particularly suited to probing the local
chemical environments of nuclei within solvation shells. For
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detailed analysis of structure-spectra relationships, Xu et al.®>*
introduced the NMRNet framework, in which a novel SE(3)-
equivariant Transformer architecture was employed to predict
liquid and solid-state NMR chemical shifts with impressive
performance. NMRNet supports both single-nucleus and
multi-nucleus prediction and has demonstrated superior per-
formance across multiple evaluation metrics, thereby providing
a powerful tool for molecular structure elucidation and mole-
cular design. Then, You et al.®®® developed a ML-augmented
method for dynamic prediction of “Li chemical shifts in LiFSI/
1,2-dimethoxyethane electrolytes. A reversal in “Li chemical
shift trends was observed;**® an upfield shift occurred as LiFSI
concentration increased from 1 M to 3 M, followed by a down-
field shift at 4 M, which is consistent with the experimental
results. The quantitative mapping between molecular structure
and NMR spectroscopy has paved the way for optimized elec-
trolyte design.

4.3. Viscosity and ionic conductivity

Viscosity is defined as the resistance of a fluid to flow under
applied shear, which originates from internal friction arising
between adjacent fluid layers moving at different relative
velocities. In working electrolytes, viscosity represents a crucial
characteristic, directly influencing ionic transport behavior.
Electrolytes with optimized viscosity are particularly essential
for applications operating under harsh conditions such as low
temperatures or fast-charging scenarios. Macroscopically, visc-
osity affects the wettability of the electrolyte onto the separator
and cathode in assembled batteries. High-viscosity liquids
generally exhibit slower wetting or spreading on solid surfaces
compared to low-viscosity fluids. Therefore, regulating viscosity
is vital for practical electrolyte deployment.®*”

Viscosity prediction methods have progressed from single-
component systems at room temperature to multi-component
systems across variable temperatures. For instance, Goussard
et al.®®® proposed a ML model capable of predicting viscosities
at 25 °C for 300 pure organic liquid compounds. Extending
temperature applicability, Chew et al.®*° introduced descriptor-
based and GNN models to predict viscosities across different
temperatures (Fig. 12a). A comprehensive dataset consisting of
viscosities for over 4000 organic small molecules was estab-
lished. MD-derived descriptors can capture intermolecular
interactions and improve viscosity prediction accuracy, parti-
cularly under data-limited conditions. The ML models success-
fully captured the inverse relationship between viscosity and
temperature for six potential co-solvents suitable for LIBs,
including methyl acetate and ethyl acetate. Furthermore, Bilo-
deau et al.®®® proposed an automated pipeline to predict the
viscosity of liquid mixtures while accounting for temperature
effects (Fig. 12b). A substantial dataset comprising 1734 com-
pounds and 39 077 mixture data points from the literature was
assembled. The model, based on a directed MPNN architecture
using molecular graphs, mole fractions, and temperature as
inputs, achieved a MAE of 0.043 in log(cP) units.

Ionic liquids (ILs) have emerged as promising electrolyte
solvents due to their enhanced stability and non-flammability
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compared to conventional organic solvents.®®* Typically, the visc-
osity of ILs is one to two orders of magnitude higher than that of
routine organic liquids. The high viscosity and consequently
moderate ionic conductivity severely limit the battery cycling
performance of IL-based electrolytes at room temperature.®®®
Numerous studies focused on predicting the viscosity of ILs. For
instance, Han et al. utilized multiple linear regression to correlate
the viscosities of imidazolium-based ILs at 298.15 K. Zhao et al.**®
constructed two predictive models, a multi-linear regression model
and an SVM model, using 1079 experimental viscosity data points
for 45 imidazolium-based ILs, measured under pressures ranging
from 1 to 3000 bar and temperatures between 273.15 and 395.32 K.
The SVM model achieved an impressive R* value of 0.977. Huwai-
mel et al.®® collected a comprehensive dataset comprising 8500
entries to develop predictive models for the viscosity of IL-
containing mixtures. Employing input variables such as cation
and anion types, temperature, and IL concentration, the RF model
attained an exceptionally high R* score of 0.997.

Ionic conductivity, as a fundamental parameter characterizing
the efficiency of ionic transport within electrolytes, reflects the
directional migration capability of ions under applied electric
fields. Its value is collectively determined by carrier concen-
tration, ionic charge, and mobility, directly influencing electrolyte
performance.®®® Shi et al.°®' built linear and nonlinear QSPR
models based on molecular descriptors to predict the ionic
conductivity of ILs, explicitly accounting for temperature effects
(Fig. 12c¢). As a result, employing the ion-pair representation with
a back-propagation ANN yielded a test-set R* of 0.989 without any
notable outliers, consistent with the findings reported by Yang
et al.®®® Additionally, Chen et al.®**> combined physically derived
COSMO-RS modeling with robust ML techniques, effectively
reducing the MAE of purely physical models from 0.550 to
0.396 (Fig. 12d). The dependencies of ionic conductivity on
temperature, alkyl chain length, cation alkyl-chain branching,
and anion volume were emphasized, providing valuable insights
for selecting and developing predictive models based on these IL
properties and guiding other molecular property predictions.

Furthermore, the relatively low ionic conductivity of solid
polymer electrolytes (SPEs) compared with liquid and ceramic
solid electrolytes has limited their widespread adoption in
functional battery systems. To accelerate SPE molecular discov-
ery, Bradford et al.®® introduced ChemArr, a neural network
trained on data from 217 experimental publications, to predict
SPE ionic conductivity (Fig. 12e). ChemArr employs Chemprop’s
directed MPNN to encode polymer and salt molecular graphs,
integrates salt concentration and polymer molecular weight,
and then outputs Arrhenius parameters for conductivity predic-
tion. It was further applied to over 20000 hypothetical SPE
formulations derived from 820 synthetic polymers. A 2D UMAP
projection of the predicted polymer space revealed clusters of
polymers with high predicted conductivity, providing a valuable
roadmap for guiding future experimental efforts (Fig. 12f).

4.4. Melting, boiling, and flash points

The exploration of safe batteries operated under extreme con-
ditions (e.g., Arctic, desert conditions) critically depends on

This journal is © The Royal Society of Chemistry 2025
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precise prediction of melting,”°%”° boiling,**°**> and flash
points,®°%%® necessitating comprehensive high-quality thermo-
physical datasets to enable reliable computational modeling
frameworks. Bergstrom et al.®®° constructed a dataset containing

277 molecules for melting point prediction and applied partial
least squares projection methods, achieving an RMSE of 44.6 K.
The dataset has since been widely used as a benchmark for
comparative melting point prediction studies. Subsequently,
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Karthikeyan et al.®® expanded the dataset significantly, compil-
ing a diversified set of 4173 compounds. A FNN model was
established and compared with Bergstrom’s original dataset,
achieving an MAE of 32.6 K. Tetko et al.®*! further substantially
extended the available melting point data, compiling published
datasets comprising melting points for over 47 000 compounds
and subsequently extracting nearly 300000 data points from
patent literature, greatly enriching the melting point dataset.®>

For boiling point prediction, Needham et al.®®® created a
dataset of 74 alkanes, reporting R> = 0.999. Balaban et al.®**
expanded this approach to 532 halogenated hydrocarbons,
employing molecular descriptors and achieving R*> = 0.97.
Katritzky et al.®®> constructed an initial dataset of 298 diverse
organic compounds to predict normal boiling points (R* =
0.973), subsequently enlarging it to 612 compounds (R*> =
0.965).°°® The data size was further expanded by Gharagheizi
et al.*®” FNNs were utilized to predict the normal boiling points
of a considerably larger dataset containing 17 768 compounds,
and an RMSE of 21 K was achieved on the test set. More recently,
Qu et al®® leveraged a dataset of 22935 experimental data
points to develop GCN models, attaining an MAE below 6 K.

In flash point prediction, Katritzky et al.®®® applied ML
models on 271 diverse compounds, achieving an R* value of
0.953. Importantly, a strong correlation between flash points
and experimental or predicted boiling points was demon-
strated, providing foundational guidance for subsequent
research utilizing boiling points as descriptors for flash point
prediction.”®® 7% Then, the dataset was extended to 758 organic
compounds, and ANN models incorporating geometric, topo-
logical, quantum-mechanical, and electronic descriptors were
developed, achieving an R* of 0.978 and an MAE of 12.6 K.”%
Additionally, Zhokhova et al.”®* developed a database of flash
points for 525 organic compounds, employing linear models
based on fragment descriptors and ANN models, resulting in an
R? of 0.959 and an RMSE of 14.6 K. Gharagheizi et al.”®® further
predicted flash points of 1378 organic compounds using func-
tional group-based neural network models, achieving an excel-
lent R*> of 0.97 and a standard error of prediction of 13.1 K.
Subsequently, Le et al’®® assembled an extensive dataset
comprising 9399 chemically diverse compounds, with flash
points ranging from below —130 to above 900 °C. Bayesian
regularized ANNs with a Laplacian prior were utilized, and an
R? value of 0.95 was achieved.

However, most current reported methods remain confined
to predicting a single property. For simultaneous prediction of
electrolyte properties, Gao et al.®® proposed a knowledge-based
electrolyte property prediction integration (KPI) achieving MAEs of
10.4, 4.6, and 4.8 K for melting, boiling, and flash points,
respectively (Fig. 13). The framework outperformed existing
models in 18/20 benchmark datasets by systematically correlating
molecular structures with thermophysical properties. Leveraging
chemical domain knowledge, KPI combined molecular neighbor-
hood analysis and HTVS to identify 29 potential electrolyte
candidates suitable for extreme-temperature battery applications.
The knowledge-data dual-driven methodology demonstrates
superior predictive accuracy while elucidating fundamental
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structure-property relationships, particularly through its inte-
gration of explainable AI with chemical intuition.

5. Applications to molecular design in
rechargeable batteries

While significant progress has been achieved in property pre-
diction, the transition from understanding to electrolyte design
remains a central challenge, due to the vastness of chemical
space and the complexity of structure-property relationships.
With the advancement of Al, the paradigm of molecular design
has shifted from empirical trial-and-error toward data-driven
and knowledge-guided strategies.

In this section, the applications of Al technologies to mole-
cular design are discussed from multiple perspectives. Inter-
pretable models are first introduced to enable knowledge
discovery and guide rational design. Then, HTVS methods are
presented for efficiently navigating chemical space. Oriented
molecular generation is highlighted as a tool for directly creat-
ing structures with target properties. Finally, the integration of
active learning and autonomous laboratories is illustrated,
demonstrating how closed-loop experimentation accelerates
the discovery and optimization of high-performance molecules
for rechargeable batteries.

5.1. Knowledge discovery

5.1.1. Concepts of interpretable machine learning. One of
the fundamental objectives of chemical research is to establish
generalizable structure-property relationships and mechanistic
models, essentially abstracting and generalizing hidden pat-
terns within complex systems. Traditional ML, particularly DL,
has demonstrated remarkable predictive capabilities. However,
the inherent black-box nature of these models often creates a
disconnect between model predictions and the underlying
chemical mechanism. The conflict has motivated researchers
to reconsider the essential value of ML models, not merely as
predictive tools, but also as vehicles for knowledge discovery.
Consequently, IML has emerged as a leading frontier in the
interdisciplinary fields of cheminformatics and computational
materials science. The central objective of IML is to construct
transparent or traceable models that transform data-driven
statistical correlations into physically and chemically mean-
ingful, interpretable knowledge.

IML can be broadly divided into two approaches: intrinsi-
cally interpretable models and post hoc interpretability meth-
ods. The former emphasizes simplicity and transparency,
designing models (e.g., linear regression, decision trees, rule
lists) whose parameters directly map onto input features.
Linear regression clearly associates regression coefficients with
physical variables, while decision trees and rule lists produce
easily interpretable rules reflecting specific molecular or struc-
tural boundaries. However, these models often assume linearity
or piecewise linearity, limiting their ability to capture the
nonlinear interactions commonly observed in battery systems.

This journal is © The Royal Society of Chemistry 2025
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Post hoc interpretability techniques aim to mitigate these
limitations by providing human-understandable explanations
for complex, often black-box models. Feature attribution ana-
lyses, including SHAP and local interpretable model-agnostic
explanations, quantify each feature’s contribution to the pre-
diction, either globally (e.g., via Shapley values) or locally (e.g.,
by constructing linear approximations around individual sam-
ples). Surrogate models and diagnostics, such as partial depen-
dence plots, reveal marginal effects of specific features by

This journal is © The Royal Society of Chemistry 2025

perturbing the remaining variables, thereby highlighting
potential nonlinear behaviors. Furthermore, visualization map-
pings offer additional insights. By projecting high-dimensional
features or network states into lower-dimensional visual spaces,
these methods pinpoint the most influential input regions or
interactions.

5.1.2. Knowledge discovery guiding molecular rational
design. The strategic application of intrinsically interpretable
models has enabled fundamental discoveries in electrolyte
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optimization. Kim et al.®® utilized highly interpretable models
to uncover the relationship between electrolyte molecular struc-
tures and CE (Fig. 14a). Experimental data from over 150 Li||Cu
battery tests were collected, encompassing electrolyte systems
including conventional, high-salt, localized high-concentration,
fluorinated, dual-salt, and additive-enhanced formulations, with
a CE range from 80% to 99.5%. By constructing molecular
descriptors for the collected data and employing linear models,
negative correlations of the oxygen content ratio in solvents and
the carbon content ratio in anions with CE were observed. In
contrast, high proportions of inorganic components and fluorine-
to-oxygen ratios positively influenced CE. Notably, contrary to the
traditionally emphasized role of fluorinated molecules, the oxygen
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of solvents was the most decisive factor affecting CE (Fig. 14b).
While fluorination of solvent molecules is known to weaken Li"
solvation, it was inferred that similar effects were achieved by
reducing oxygen content in solvents. Guided by these fresh
insights, a fluorine-free solvent electrolyte was proposed, render-
ing a high CE of 99.7%.

Complementing these analytical approaches, visualization-
driven strategies are gaining traction in molecular discovery. Li
et al.”®” adopted a dimension-reduction-based clustering visuali-
zation strategy to screen additives for aqueous Zn-ion battery
electrolytes (Fig. 14c). Specifically, a random tree embedding
algorithm was utilized to transform 17 physical descriptors, after
which k-means clustering algorithm and Voronoi partitioning
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Fig. 14 Knowledge discovery guiding molecular rational design. (a) Li metal anode electrolyte design via automated data acquisition and model
development.®® (b) Feature importance analysis using MSE and node purity metrics.88 Reproduced with permission from ref. 88. Copyright 2023 The
Authors. (c) Al-driven additive selection for agueous Zn-ion batteries employing RTE dimensionality reduction and Voronoi clustering.707 Reproduced
with permission from ref. 707. Copyright 2024 Wiley-VCH. (d) Solvent database generation and visualization via clustering methods to reveal the
reductive stability of ion—solvent complexes in Li battery electrolytes.® (e) IML prediction of ion—solvent complex LUMO energy levels with SHAP-based
ether feature ranking.®® Reproduced with permission from ref. 85. Copyright 2023 American Chemical Society. (f) Intelligent screening of
wide-temperature electrolytes through atom-level explainable analysis of boiling points.”°® Reproduced with permission from ref. 708. Copyright

2024 Wiley-VCH.
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were applied in the 2D space. Using silhouette analysis, the
optimal cluster number was determined to be nine, enabling
the identification of regions most significantly associated with
enhanced battery stability. Within these identified regions, mole-
cules such as 1,2,3-butanetriol and acetone exhibited notably low
predicted surface free energies, indicative of structural stability,
thereby emerging as promising additive candidates. Subsequent
experiments demonstrated that batteries incorporating acetone
and 1,2,3-butanetriol as electrolyte additives significantly outper-
formed pure ZnSO, electrolytes in terms of initial CE, voltage
polarization, and cycling stability.

There are increasing contributions that employed post hoc
SHAP analysis to decode complex molecular interactions. To
explore factors influencing the reduction stability of electrolyte
solvent molecules, Gao et al.®® proposed a graph-theory-based
molecular generation method, constructing a database comprising
1399 electrolyte solvent molecules (Fig. 14d). First-principles calcu-
lations were employed to determine the LUMO energy levels of
these electrolyte molecules. The study revealed that the reduction
stability of electrolytes decreased when solvent molecules formed
ion-solvent structures. A combination of RF modeling and Shapley
value-based interpretability analysis was utilized, and molecular
dipole moment and molecular radius were identified as critical
descriptors influencing electrolyte reduction stability (Fig. 14e). The
data-driven approach not only investigated the reduction stability
of electrolyte ion-solvent structures but also uncovered essential
factors governing electrolyte stability, thus providing valuable
theoretical insights into advanced electrolyte molecule design.

Beyond feature attribution methods, surrogate modeling
approaches have proven effective in bridging DL predictions
with chemical intuition. Qin et al’®® employed surrogate
models to extract interpretable knowledge embedded within
DL black-box models, facilitating the design of non-aqueous
electrolytes suitable for wide temperature operation. Interpret-
ability analysis revealed similarities between nitrile groups
(-CN) and fluorine substituents in influencing electrolyte prop-
erties, such as boiling point and dielectric constant (Fig. 14f).
Taking 3-methoxypropionitrile (MPN) as an illustrative exam-
ple, the contribution of each atomic site within MPN toward
boiling and melting points was quantitatively assessed using
interpretable methods. The strongly polar nitrile group posi-
tively contributed to elevated boiling and melting points,
whereas the presence of ether linkages (—COC—) exhibited an
opposing effect, effectively offsetting the increase in melting
point and broadening the liquid-phase operating range. With
additional introduction of ether linkages, MPN was eventually
identified as the primary electrolyte solvent. The MPN electro-
lyte enabled LIBs to operate reliably over an exceptionally wide
temperature range from —60 to 120 °C. Notably, LiCoO,||Li
cells utilizing the proposed wide-temperature MPN electrolyte
demonstrated stable cycling performance, maintaining a high
capacity retention of 72.3% after 50 cycles at 100 °C.

5.2. High-throughput virtual screening

5.2.1. Concepts of chemical space and high-throughput
virtual screening. In molecular design for rechargeable batteries,

This journal is © The Royal Society of Chemistry 2025

View Article Online

Review Article

a core challenge arises from the enormous scale of chemical
space contrasted with the limited throughput of experimental
validation. Chemical space, encompassing all possible molecules
and their corresponding properties, expands combinatorially
with dimensions determined by atomic types, bonding patterns,
and configurational arrangements. The number of theoretically
possible organic molecules reaches an astronomical scale of
approximately 10°, far exceeding the practical exploration cap-
abilities of experimental techniques.”® Traditional trial-and-error
methods exhibit extremely low search efficiency in such high-
dimensional spaces. In contrast, HTVS, employing computation-
ally driven hierarchical optimization strategies, transforms ran-
dom searches into directed molecular design, and is expected to
accelerate the process of molecular discovery.

The workflow of HTVS begins with the rational construction
of chemical spaces. Based on functional requirements of target
battery systems, molecular space boundaries are defined through
combinatorial rules or generative models, constraining molecular
diversity to maintain computational feasibility. A multi-step
screening process follows. The initial coarse-screening phase
prioritizes low computational cost descriptors or cheminformatics
toolkits, rapidly filtering molecules, such as eliminating structu-
rally unstable candidates based on topological rules or assessing
thermodynamic stability using semi-empirical quantum chemical
methods, to substantially reduce the molecular space size. The
preliminary screening efficiently excludes unsuitable candidates,
typically compressing the initial molecular space to a manageable
scale with minimal resource consumption. The subsequent
precise-screening stage employs high-accuracy computational
methods for detailed validation of targeted properties. QM calcula-
tions, particularly those based on DFT, reveal electronic structural
characteristics, while MD simulations quantify thermodynamic
and transport parameters. Integrating these approaches enables
the identification of candidate molecules exhibiting both thermo-
dynamic stability and desired functionalities. Concurrently, Al-
driven predictive models significantly accelerate the screening
process by establishing mappings between molecular structures
and macroscopic properties. Data-driven predictive models rapidly
pinpoint potential high-performance candidates, with high-
precision computations further validating their reliability.

5.2.2. High-throughput virtual screening accelerating the
discovery of advanced molecules. HTVS can significantly accel-
erate the discovery of high-performance recipes through sys-
tematic integration of computational modeling, data mining,
and experimental validation. For example, Cheng et al.’® estab-
lished a foundational hierarchical computational screening
framework, conducting multi-stage property evaluations via
QM calculations for over 1400 organic molecules intended for
non-aqueous flow batteries (Fig. 15a). During the initial screen-
ing (redox potential evaluation), the number of candidate
molecules was reduced from 1417 to 353. The second step
(solubility assessment) further decreased the number from
353 to 262. Subsequently, structural stability screening elimi-
nated additional molecules, primarily thiane derivatives suscep-
tible to ring-opening reactions during reduction, ultimately
yielding 231 promising candidates. These remaining molecules,
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satisfying redox window criteria, emerged as suitable candidates
for experimental validation. Further advancing the field, Zhang
et al.”*® employed a data-driven strategy to expand the scope of
HTVS (Fig. 15b). A virtual library containing 3257 quinone
derivatives for aqueous flow batteries was developed. DFT
calculations predicted redox potentials, supervised ML models
estimated aqueous solubility, and automated searches within

Chem. Soc. Rev.

the ZINC database identified commercially available com-
pounds. From the approach, 205 candidate compounds exhibit-
ing superior predicted solubility and lower redox potentials were
selected. Among the 205 candidates, 16 commercially available
compounds underwent experimental evaluation, with electro-
chemical characterization performed on seven molecules. As a
result, Indigo-3(SO;H) exhibited notably enhanced solubility,
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capacity retention, and CE relative to the benchmark
anthraquinone-2,7-disulfonic acid.

For the molecular design of electrolytes targeting fast-
charging LIBs, Yang et al.”*' proposed a data-knowledge-dual-
driven approach, integrating high-throughput calculations, ML
techniques, and experimental validation (Fig. 15c). A molecular
dataset comprising 1321 129 compounds was constructed, from
which 54202 candidates were systematically screened using
DFT calculations and MD simulations. Key molecular descrip-
tors, encompassing thermal and structural stability, tempera-
ture range, solvation, viscosity, and chemical stability, were
employed in conjunction with ML models for efficient property
prediction. Through this screening process, three novel carbox-
ylate solvents, methyl trimethylacetate, ethyl trimethylacetate
(ETMA), and ethyl 2,2-dimethylbutanoate, were identified. Nota-
bly, ETMA-based electrolytes demonstrated excellent fast-
charging performance, achieving the highest voltage (4.3 V),
the highest charging rate (4.0 C), and the longest cycle life (over
4100 cycles) compared with literature reports. For LMBs, Jia
et al®® developed an HTVS strategy for fluorinated ether
electrolytes. A database of 5576 candidates was generated from
1510 solvents and four salts. A voting ensemble model using five
key descriptors enabled rapid property prediction. A GCN
further accelerated descriptor estimation. The optimal molecule
achieved stable cycling between 2.8 and 4.4 V vs. Li/Li" at C/2
with 99.5% CE maintained over 100 cycles.

Beyond electrolyte molecules, Du et al.”*? successfully extended
HTVS strategies to electrode molecules, specifically targeting
carbonyl-based organic electrode molecules. Initially, one million
organic molecules were collected from PubChem. Subsequently,
considering atomic types, active-site counts, and hierarchical
clustering based on previously reported organic electrode mole-
cule characteristics, 1524 molecules were selected as potential
candidates. High-throughput calculations determined reduction
potentials for a randomly chosen subset of 1200 molecules,
forming the training set for an SVR model. Through the metho-
dology, naphthalene-1,4,5,8-tetraone emerged as a molecule with
high reduction potential and energy density. Experimental valida-
tion confirmed its superior performance, achieving prolonged
cycling stability of 2500 cycles at 1 A g ' and a high discharge
voltage of 2.5 V. The methodology provides valuable insights for
accurately and rapidly screening advanced organic electrode
molecules for LIBs.

5.3. Oriented molecular generation

5.3.1. Concepts of generative models and oriented mole-
cular generation. Beyond HTVS, molecules can be custom-
designed to meet specific performance targets by leveraging
goal-oriented generative models. In this paradigm, models
learn latent representations of molecular structures and inte-
grate property predictors, creating a closed loop of iterative
generation, evaluation, and optimization. Generative adversar-
ial networks (GANs), variational autoencoders (VAEs), and
diffusion models constitute key approaches.

GANs employ generator and discriminator networks within
a game-theoretic framework. The generator produces candidate
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molecules, while the discriminator distinguishes real from
synthesized data. Conditional GANs introduce property labels,
guiding the generator toward desired chemical or electroche-
mical characteristics. However, challenges such as mode col-
lapse and discrete-space backpropagation remain. VAEs rely on
an encoder-decoder architecture that encodes molecules into
continuous latent spaces and then reconstructs them. Property
tuning is enabled through latent interpolation or optimization
due to the continuity. Conditional VAEs further integrate prop-
erty constraints, directing the decoder to generate molecules with
specific attributes, such as high ionic conductivity. Nonetheless,
latent space regularization can occasionally produce conservative
designs. Diffusion models follow a Markov-chain approach,
progressively adding noise to data and learning a reverse denois-
ing process to reconstruct molecules. Stable training is offered,
and structurally complex, multi-ring molecules are effectively
generated. Moreover, SE(3)-equivariant diffusion models pre-
cisely handle 3D configurations. Through conditional guidance,
these models incorporate property requirements, yielding mole-
cules aligned with predefined design objectives. By combining
generative models with predictive property constraints, one can
transcend empirical exploration and actively engineer molecules
tailored to specialized tasks, including electrolyte additives and
active electrode components. The approach accelerates innova-
tion in advanced battery materials and related systems by system-
atically navigating the vast chemical space and directing
molecular evolution toward optimal performance.

5.3.2. Oriented molecular generation promoting precise
molecular design. In the oriented molecular design of liquid
organic molecules, Tagade et al.”** proposed a DL inverse pre-
diction framework named SLAMDUNCS, employing novel condi-
tional sampling strategies for property-driven molecular design. A
binary representation was developed to digitally encode molecu-
lar structures, and semi-supervised learning methods were
applied to establish structure-property mappings. SLAMDUNCS
predicted molecules exhibiting reduction potentials lower than
—3.35 Vrelative to the standard hydrogen electrode. Validation of
randomly selected 50 candidate molecules demonstrated a max-
imum prediction error of 0.59 V and an MAE of 0.20 V, compared
with DFT calculations.

In designing SPEs, Yang et al.”** leveraged generative Al for
de novo polymer discovery, successfully identifying candidates
with superior ionic conductivity (Fig. 16a). In unconditional
generation tasks, minGPT and diffusion-LM models exhibited
excellent performance in producing novel, valid, and synthesiz-
able polymers, while the 1D diffusion model showed compara-
tively limited efficacy. The minGPT demonstrated superior
replication of polymer property distributions and proved compu-
tationally more efficient. In conditional generation experiments
targeting ionic conductivity, minGPT-generated polymers exhib-
ited conductivity distributions distinctly skewed toward high
values. MD simulations of 50 selected polymers (from 100 000
high-conductivity-labeled candidates) resulted in successful con-
ductivity validation for 46 candidates, with 17 exhibiting con-
ductivity values exceeding all polymers in the original training
set, some even doubling the benchmark values. Khajeh et al.”*
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further proposed a polymer discovery framework comprising
three core components: a conditional generative model
(minGPT-based), a computational evaluation module (MD simu-
lations), and a feedback mechanism (Fig. 16b). Through iterative
training and strategic sampling, the framework identified 14
polymers surpassing polyethylene oxide in ionic conductivity
(Fig. 16c).

The establishment of an electrolyte molecule development
platform integrated with molecular generation tools holds great
promise for accelerating the molecular discovery process and
making it accessible to a broader community of researchers.
Chen et al.”*® introduced an Al-based platform, Uni-Electrolyte,
dedicated to the design of electrolyte molecules for rechargeable
batteries, consisting of three interconnected modules: EMolCura-
tor, EMolForger, and EMolNetKnittor. EMolCurator constructs
databases using DFT calculations and MD simulations for

Chem. Soc. Rev.

molecular property predictions, supporting multi-criteria screen-
ing, similarity searches, and Al-driven molecule generation.
EMolForger employs GNNs and reaction planners to predict
synthesis routes and optimize reaction conditions. EMolNetKnit-
tor leverages stochastic kinetic Monte Carlo simulations and
proprietary databases to analyze SEI formation and predict
decomposition products. For instance, the conditional diffusion
model accurately generated electrolyte molecules with specified
HOMO-LUMO gaps. In cases such as dimethoxyethane, despite
sparse representation in the initial dataset, the conditional
diffusion model successfully generated molecules closely aligned
with the targeted HOMO-LUMO gap region, demonstrating its
sensitivity to conditional guidance and capability to explore
sparsely populated chemical spaces (Fig. 16d). These achieve-
ments highlight the significant practical utility and potential of
Al-driven generative models for designing electrolyte molecules
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with tailored properties, thus greatly facilitating the development
of advanced battery materials.

5.4. High-throughput experimentation

5.4.1. Intelligent robotic system and autonomous labora-
tory. Autonomous chemistry laboratories represent a novel para-
digm that integrates AI and automation, rooted in the evolution
of HTE. Advances in ML have ushered in data-driven decision-
making, transforming automated experimentation into a genu-
inely intelligent process. In 2020, the first mobile robotic chemist
was constructed at the University of Liverpool under the direction
of Andrew Cooper.””” Over eight days, 688 experiments were
autonomously executed, culminating in the discovery of a novel
catalytic material. In 2021, the first all-round AI-Chemist with a
scientific mind was established at the University of Science and
Technology of China by Jun Jiang’s team.”'® AI-Chemist was
composed of a service platform, a mobile robot, multiple work-
stations, and a computational brain. Furthermore, within five
weeks, over 3.76 million formulations were screened, and a
practical oxygen-evolution electrocatalyst was synthesized using
Martian meteorite feedstock. All procedures were executed auto-
matically without human intervention.”*® In addition, lots of
intelligent robotic systems and autonomous laboratories have
been established, significantly accelerating the pace of material
innovation'620,621,720—722

The autonomous laboratory arises from systematic innovation
in hardware, software, and algorithms.”** Hardware systems are
divided into sensing and execution subsystems. The sensing unit
captures real-time parameters through multi-sensor arrays,
including spectroscopic, environmental, and visual inputs. The
execution unit features automated reactors, microscale liquid
handlers, and multi-degree-of-freedom robotic arms with sub-
millimeter accuracy. Software architecture follows a layered
design. A control layer, guided by real-time operating systems,
coordinates hardware with precise, time-triggered tasks and
built-in fault detection. Algorithmically, the emphasis is on
actively exploring the experimental space. Active learning strate-
gies select samples with high information value, balancing
exploration and exploitation. Modern autonomous labs now
embody a sense-decide-execute loop, autonomously designing
experiments, analyzing data in real time, and dynamically opti-
mizing research.

5.4.2. High-throughput experimentation accelerating com-
binatorial optimization. To optimize the crucial ion conductivity
of liquid electrolytes, Krishnamoorthy et al’>* proposed a
specialized HTE platform to elucidate the effects of electrolyte
composition on conductivity. The system fully automates the
fast, systematic formulation of up to 96 distinct liquid electro-
lytes per working day, accommodating a broad range of Li salts,
solvents/co-solvents, and multi-functional additives in both
solid and liquid forms, all of which can be varied in composition
and quantity. Extending this approach, Yan et al.”* proposed a
modular platform that integrates an automated HTE system with
the liquid electrolyte component analysis (LECA) software package
for data-driven modeling and analysis (Fig. 17a). Automated
electrolyte formulation and conductivity measurements are
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performed by an HTE unit featuring both an automated prepara-
tion module and an automated conductivity testing module. The
LECA software package streamlines data handling by incorporat-
ing widely used ML libraries into a simplified workflow that
supports parallel training, cross-validation, and uncertainty esti-
mation using linear regression, RF, neural networks, and GPR. By
comparing prediction accuracy scores, LECA identifies the best-
performing models and employs them to determine electrolyte
compositions that maximize ionic conductivity under varying
temperatures.

Further advancing the automation of electrolyte research,
Noh et al.”*® introduced a fully autonomous workflow combining
ML prediction with automated experiments, aiming to signifi-
cantly enhance the solubility of redox-active organic molecules
(Fig. 17b). Taking 2,1,3-benzothiadiazole as the model redox-
active organic molecule, the researchers developed a closed-loop
solvent screening process, composed of two interconnected mod-
ules: an HTE module and a BO module. The HTE module employs
a high-throughput robotic platform for sample preparation and
solubility measurements, while the BO module uses a surrogate
model and acquisition function to predict solubility and recom-
mend new solvents for evaluation. Experimental efficiency was
significantly enhanced by the proposed workflow, which enabled
the solubility of 42 samples to be measured within approximately
27 hours, over 13 times faster than the conventional approach
(Fig. 17c). Human intervention was limited to transferring sam-
ples between the robotic system and the nuclear magnetic reso-
nance instrument, thereby reducing the risk of operator-induced
errors. Compared with random selection, the BO algorithm con-
siderably accelerated the screening process by more effectively
pinpointing solvents with high solubility. In the final screening of
2003 binary solvent systems, three rounds of BO identified 18 new
mixtures in which 2,1,3-benzothiadiazole solubility exceeded 6.20 M,
achieving a remarkable solubility of 6.50 M.

To generate comprehensive datasets and optimize the poly-
mer electrolyte compositions, Stolberg et al.”?” proposed a fully
automated characterization workflow to accelerate the discovery
of polymer-based electrolytes (Fig. 17d). The high-throughput
workflow involves defining experimental objectives, formulating
recipes, establishing process parameters, and then employing
ML for plan optimization (Fig. 17e). Subsequently, the raw
materials (either commercially purchased or synthesized in the
laboratory) and operating instructions were loaded into a high-
throughput platform, by which all subsequent operations are
automatically executed. The system was composed of modular
workstations capable of chemical dispensing, mixing, drying,
and physicochemical characterization, all executed by two three-
axis robotic arms equipped with multifunctional tool heads. In
terms of speed, the platform completes 90 sample tests within
five days, which is around 100 times faster than traditional
approaches. Moreover, the study yielded the largest dataset to
date for comparing Li and sodium polymer electrolytes, encom-
passing over 70 unique formulations, 330 samples, and nearly
2000 ionic conductivity measurements. The dataset constitutes
a valuable resource for guiding further research in polymer
electrolytes.
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6. Conclusions and perspectives

The advancement of battery technologies hinges on the strategic
design of functional molecules, which govern critical electro-
chemical processes across electrolytes, electrodes, and auxiliary
components. Molecular innovation serves as the cornerstone for
optimizing energy density, power density, cycling lifespan,
working temperatures, and safety in next-generation battery
systems. From redox-active organics enabling high-voltage cath-
odes to solvation-tailored electrolytes suppressing interfacial
degradation, the discovery of novel molecules directly translates
to transformative breakthroughs in energy storage.

Al has emerged as a paradigm-shifting tool to accelerate the
molecular discovery process, bridging the gap between empiri-
cal exploration and rational design. By leveraging data-driven
models, Al deciphers complex structure-property relationships
at unprecedented speeds, enabling rapid prediction of inter-
ested properties such as redox potential, ionic conductivity, and
viscosity. In addition, AI uncovers hidden patterns in chemical
space, guiding the identification of molecular motifs that defy
conventional design principles. Through virtual screening,
generative design, and autonomous experimentation, Al trans-
forms molecular discovery from a trial-and-error endeavor into
a systematic, knowledge-driven discipline, positioning itself as
an indispensable ally in the quest for sustainable energy
storage solutions.

To fully realize the potential of Al in battery molecular innova-
tion, concerted efforts should address four pivotal frontiers:

(1) Data infrastructure: establishing standardized and high-
fidelity molecular databases is paramount for advancing Al-
driven molecular design. Current datasets are often fragmented
and heterogeneous, characterized by inconsistent experimental
protocols, missing metadata, and limited representation of
emerging chemistries such as SPE and multivalent ion systems.
To address these limitations, the development of open-access
and community-curated repositories is essential. The databases
should integrate multi-scale data, spanning from QM calcula-
tions and MD simulations to macroscopic properties and
device-level performance metrics. Such a comprehensive inte-
gration will facilitate the training of more generalizable and
transferable AI models. Equally important is the implementa-
tion of robust data governance practices. Ensuring data quality,
reproducibility, and interoperability requires the adoption of
standardized ontologies, metadata schemas, and version con-
trol mechanisms. Moreover, the promotion of FAIR (findable,
accessible, interoperable, and reusable) principles’*® will
improve data discoverability and reusability across research
domains. Federated learning frameworks offer a promising
solution for harmonizing distributed and proprietary datasets,
allowing institutions to collaboratively train models without
sharing raw data, thus preserving confidentiality and enhancing
inclusivity."'®”*° Ultimately, a coordinated effort in both data
creation and governance will be vital for unlocking the full
potential of AI in molecular discovery.

(2) Algorithmic synergy: future algorithm development
should prioritize small-sample learning, transfer learning,
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and the design of algorithms tailored to complex systems.
Battery research often suffers from data scarcity, making it
essential to develop goal-oriented small-sample learning strate-
gies. Advanced feature extraction methods are needed in this
context. For example, architectures such as ChemXTree”*° and
Meta-GAT”*" have been developed to enable the effective utiliza-
tion of sparse data. Further model development is necessary,
including both universal pre-trained models and dedicated few-
shot learning frameworks. For instance, the pre-trained GIMLET
model”®* enables zero-shot learning, while the SPARKLE
framework”? has been developed for zero-shot discovery of
high-performance, low-cost organic battery materials. Supporting
tools like knowledge graphs also show promise in addressing
data scarcity. Methods such as KnowDDI”** and EmerGNN">*
have been introduced to facilitate the efficient extraction of
valuable information. Moreover, the rapid development of
small-molecule algorithms in diverse fields such as drug discov-
ery, perovskite batteries, and optoelectronic materials is expected
to greatly contribute to the advancement of AI methods in battery
research. These algorithms are often not confined to a single
domain, and the emergence of general-purpose molecular
models is likely to drive collective progress across the research
community. In this process, developing advanced transfer learn-
ing techniques will be crucial. Integrating domain knowledge
with modeling approaches may lead to the creation of highly
specialized models better suited to the unique requirements of
battery systems. Finally, since batteries represent inherently
complex systems, establishing cross-scale AI models is a vital
direction. Feng and co-workers’**7° developed constant-
potential methods to simulate the electrical double layers formed
between the electrode and the electrolyte, thereby overcoming a
challenge that could not be accurately addressed by conventional
approaches and made a breakthrough in advancing the study of
interfacial behavior. Cheng and co-workers”*’”** introduced a
set of advanced hybrid algorithms for simulating electrode-
electrolyte interfaces under operating conditions, offering new
insights into interfacial structures and reactions. Future algo-
rithm development should explicitly consider realistic scenarios
such as multi-component electrolyte interactions and electrode-
electrolyte interfacial reactions, while also extending molecular
representation methods to capture this hierarchical complexity.

(3) Computational power: computational power forms the
backbone of Al-driven molecular discovery, enabling large-scale
model training and algorithm optimization for high-dimensional
property prediction. Cloud-based platforms democratize access
to GPU and tensor processing unit clusters, fostering collabora-
tive workflows and accelerating virtual screening. In the future,
quantum-classical hybrid architectures are expected to play a
transformative role by combining the parallelism of quantum
computing with the robustness of classical systems. This synergy
holds the potential to overcome current computational bottle-
necks, enabling real-time modeling of complex molecular sys-
tems and reaction networks. However, the energy demands of Al
are escalating at an unprecedented rate. Recent estimates suggest
that electricity consumption attributable to AI could surpass 1000
TWh by 2026, comparable to Japan’s total annual consumption,
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and rise to between 5% and 9% of global electricity usage by 2050
if the current trends continue.”** This underscores the urgent
need to develop energy-efficient computational frameworks. Bal-
ancing performance and efficiency will be essential to ensure that
Al-driven molecular science progresses sustainably.

(4) Autonomous experimentation: closing the loop between
Al predictions and experimental validation necessitates the
widespread adoption of autonomous experimentation systems.
Self-driving laboratories, integrating robotic synthesis platforms
with real-time, high-resolution characterization tools, such as
operando spectroscopy, high-throughput electrochemistry, and
automated microscopy, will enable rapid and iterative design-
test-learn cycles. Achieving these goals will require tight colla-
boration across disciplines, bringing together expertise in mate-
rials science, robotics, software engineering, and ML. Such
integrated ecosystems will not only improve throughput and
reproducibility but also enhance the adaptive learning capacity
of AI models through real-time feedback loops. Ultimately, the
fusion of Al-driven hypothesis generation with autonomous
experimentation will usher in a new era of closed-loop scientific
discovery in molecule and materials research.

The convergence of these pathways will redefine the mole-
cular discovery landscape, fostering a new era where Al not only
predicts but also understands and innovates. By harmonizing
data, algorithms, computation, and experimentation, the scien-
tific community can unlock the full potential of Al-driven
molecular engineering, ultimately delivering battery systems
that meet the urgent demands of a decarbonized energy future.

This is a beautiful era, for AI affords us the imaginative
space to explore chemical phenomena and to construct
advanced materials; it is also the worst of times, for AI that
can truly deliver precisely as directed remains exceedingly rare.
At the heart of these endeavours lies innovation—research
conducted around genuine problems, with the aim of addres-
sing real issues and genuinely solving them. A new age is
dawning, in which data will emerge as a novel means of
apprehending the world. High-level innovation will provide an
unceasing stream of breakthroughs, and AI empowerment will
drive energy chemistry and materials chemistry to become new
quality productive forces for societal well-being and the
advancement of a community with a shared future for mankind.
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